

1

 UNIVERSIDADE DE SÃO PAULO

Instituto de Ciências Matemáticas e de Computação

D e p a r t a m e n t o d e S i s t e m a s d e C o m p u t a ç ã o

São Carlos - SP

Estudo de abordagens de DL-CNN

(Deep Learning Convolutional Neural
Nets) visando a detecção de veículos

em imagens de vídeo, a fim de
aumentar a segurança e evitar

acidentes em vias públicas

Nilo Conrado Messias Alves Cangerana

[Nome do Aluno]

2

Estudos de abordagens de DL-CNN (Deep Learning
Convolutional Neural Nets) visando a detecção de
veículos em imagens de vídeo, a fim de aumentar
a segurança e evitar acidentes em vias públicas

Nilo Conrado Messias Alves Cangerana

Orientador: Fernando Santos Osório

Monografia referente ao projeto de conclusão de curso

dentro do escopo da disciplina SSC0670 – Projeto de

Formatura I do Departamento de Sistemas de

Computação do Instituto de Ciências Matemáticas e de

Computação – ICMC-USP para obtenção do título de

Engenheiro de Computação.

Área de Concentração: Inteligência Computacional

USP – São Carlos

Junho, 2021

i

Resumo

Durante as últimas décadas, o número de veículos automotivos no Brasil tem crescido

gradativamente. Com o aumento do número de veículos que circulam pelas vias, o índice de

acidentes de trânsito também aumenta. Devido ao avanço do poder computacional nos últimos

anos, a área de Deep Learning tem ganhado destaque pela sua capacidade de resolver

problemas de reconhecimento de padrões e localizar objetos. Afim de se diminuir a

quantidade de acidentes de trânsitos, pode-se utilizar abordagens de Deep Learning. Ao

utilizar modelos de Deep Learning, é possível desenvolver um sistema capaz de reconhecer

padrões de veículos, identificando e localizando os mesmos em imagens. O projeto consiste

no desenvolvimento de um sistema que utiliza Redes Neurais Convolucionais para localização

de veículos em vídeos de câmeras que monitoram cruzamentos, afim de se sinalizar

motoristas de que outros veículos percorrem as vias, aumentando a segurança no trânsito. A

arquitetura de Rede Neural Convolucional utilizada para o desenvolvimento é a U-Net, que é

uma rede que localiza objetos através da segmentação semântica dos mesmos. Neste trabalho,

é realizada a modelagem do sistema proposto, que consiste no processamento de um vídeo de

entrada, na qual a Rede Neural Convolucional realiza a segmentação semântica dos possíveis

veículos presentes no vídeo, obtendo suas localizações. Para o desenvolvimento do projeto, é

necessário realizar o treinamento do modelo. É escolhido um conjunto de dados para compor

os conjuntos de treino, validação e de teste. O desempenho do modelo é medido com a

métrica Intersect over Union, que possibilita identificar se o modelo apresenta boa precisão.

Além do modelo da U-Net, são implementados outros modelos de Redes Neurais

Convolucionais para comparar o resultado em diferentes arquiteturas e determinar se a rede

escolhida apresenta bons resultados para essa funcionalidade. Os resultados do sistema são

apresentados no final do trabalho, indicando se o sistema apresenta potencial para aumentar a

segurança no trânsito.

Palavras-chave: Visão Computacional; Redes Neurais; Deep Learning; Segmentação

Semântica; Processamento de Imagens.

ii

Índice

LISTA DE ABREVIATURAS/SIGLAS .. IV

LISTA DE TABELAS ... V

LISTA DE FIGURAS .. VI

CAPÍTULO 1: INTRODUÇÃO .. 1

1.1. CONTEXTUALIZAÇÃO E MOTIVAÇÃO ... 1

1.2. OBJETIVOS ... 3

1.3. ORGANIZAÇÃO DO TRABALHO .. 4

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA .. 5

2.1. CONSIDERAÇÕES INICIAIS .. 5

2.2. CONCEITOS E TERMINOLOGIAS .. 5

2.2.1. Segmentação Semântica ... 5

2.2.2. Datasets .. 6

2.2.3. Regularização .. 7

2.2.4. Métrica Intersection over Union Média ... 8

2.3. REDES NEURAIS CONVOLUCIONAIS E ARQUITETURAS .. 10

2.3.1. Definições ... 10

2.3.2. Camadas ... 11

2.3.3. Arquiteturas ... 14

2.4. TRABALHOS RELACIONADOS ... 16

iii

2.5. CONSIDERAÇÕES FINAIS .. 17

CAPÍTULO 3: DESENVOLVIMENTO DO TRABALHO 18

3.1. CONSIDERAÇÕES INICIAIS .. 18

3.2. DESCRIÇÃO DO PROJETO ... 18

3.2.1. Modelagem do Sistema .. 18

3.2.2. Linguagem de Programação .. 20

3.2.3. Plataforma de Desenvolvimento e Recursos Computacionais 20

3.3. DESCRIÇÃO DAS ATIVIDADES REALIZADAS ... 21

3.3.1. Escolha e Processamento do Dataset .. 21

3.3.2. Data Augmentation .. 24

3.3.3. Implementação do Custom Data Generator .. 26

3.3.4. Implementação dos Modelos de CNN .. 26

3.4. RESULTADOS OBTIDOS .. 30

3.4.1. Treinamento dos Modelos e Resultados ... 30

3.4.2. Resultados do Sistema .. 33

3.5. DIFICULDADES E LIMITAÇÕES ... 35

3.6. CONSIDERAÇÕES FINAIS .. 36

CAPÍTULO 4: CONCLUSÃO .. 37

4.1. CONTRIBUIÇÕES .. 37

REFERÊNCIAS .. 38

iv

 Lista de Abreviaturas/Siglas

CE – Cross-Entropy

CNN – Convolutional Neural Network

DL – Deep Learning

FCN – Fully Convolutional Network

FN – False Negative

FP – False Positive

fps – Frames por segundo

GT – Ground Truth

IA – Inteligência Artificial

IoU – Intersection over Union

ReLU – Rectified Linear Unit

TP – True Positive

v

Lista de Tabelas

Tabela 1 – Lista de classes e seus valores de labels .. 23

Tabela 2 – Implementação da U-Net ... 27

Tabela 3 - Implementação da FCN-16s .. 28

Tabela 4 - Implementação da FCN-8s .. 29

Tabela 5 - Erro e IoU Média nos diferentes conjuntos para a U-Net 32

Tabela 6 - Erro e IoU Média nos diferentes conjuntos para as FCN 32

vi

Lista de Figuras

Figura 1 - Exemplo de Segmentação Semântica .. 5

Figura 2 - Imagem e sua respectiva Ground Truth ... 7

Figura 3 - Visualização da IoU .. 9

Figura 4 - Gráfico da ReLU ... 11

Figura 5 - Visualização da operação de Convolução ... 12

Figura 6 - Visualização da operação de Max Pooling ... 13

Figura 7 - Visualização da operação de Convolução Transposta 13

Figura 8 - Arquitetura da U-Net ... 15

Figura 9 - Arquiteturas FCN-32s, FCN-16s e FCN-8s .. 16

Figura 10 - Modelagem do Sistema ... 18

Figura 11 - Imagens do KITTI MOTS Dataset .. 21

Figura 12 - Exemplo do Cityscapes Dataset ... 22

Figura 13 - Imagem e GT após o processamento ... 23

Figura 14 - Distribuição da quantidade de imagens por classes nos datasets 24

Figura 15 - Exemplos da aplicação do data augmentation 25

Figura 16 – Quantidade de imagens por classe após o data augmentation 25

Figura 17 - Gráficos do Erro e da IoU Média para U-Net 31

Figura 18 - Gráficos do Erro e da IoU Média para FCN-16s e FCN-8s 33

Figura 19 - Legenda das classes da segmentação semântica 34

vii

Figura 20 - Resultados da segmentação semântica em vídeo 1 34

Figura 21 - Resultados da segmentação semântica em vídeo 2 35

1

CAPÍTULO 1: INTRODUÇÃO

1.1. Contextualização e Motivação

Durante as últimas décadas, o número de veículos automotivos no Brasil tem crescido

gradativamente. De acordo com os dados do Instituto Brasileiro de Geografia e Estatística

(2006, 2020), a frota de veículos no Brasil em 2006 era composta por aproximadamente 45

milhões unidades, enquanto que, em 2020, a frota de veículos no Brasil cresceu cerca de

140% em relação a 2006, atingindo uma marca de 108 milhões de unidades de veículos de

diversos tipos. Essa popularização de veículos automotivos decorre principalmente do

crescimento econômico do Brasil durante as últimas décadas, que possibilitou um aumento de

renda para diferentes classes sociais e, consequentemente, facilitou a aquisição de veículos

pela população. Outro fator importante que explica a expansão da frota de veículos no Brasil é

a redução do custo de fabricação e de venda destes produtos, desde que o Fordismo

revolucionou a indústria de produção de automóveis, fazendo com que veículos deixassem de

ser produtos caros, através da produção em massa, se tornando mais acessíveis para a

população.

No entanto, com o crescimento elevado de veículos automotivos, problemas

envolvendo o tráfego de veículos nas vias também crescem. Dentre estes problemas, pode-se

observar um aumento de congestionamento em grandes centros urbanos, um aumento da

emissão de gases poluentes na atmosfera e também um aumento nos índices de acidentes de

trânsitos. Em relação aos acidentes, o Brasil ainda possui altos índices. Segundo os dados

divulgados pelo DATASUS (2020), foram registrados cerca de 30 a 40 mil mortes por

acidentes de trânsito nos últimos 5 anos. Muitos desses acidentes ocorrem principalmente em

vias que possuem cruzamentos com problemas de oclusão, prejudicando a visibilidade de

motoristas que trafegam por elas.

Com o avanço do poder computacional durante os últimos anos, e a facilidade na

aquisição de grandes quantidades de dados devido a digitalização da sociedade, um subtópico

da Inteligência Artificial (IA), conhecido como Deep Learning (DL), tem ganhado destaque

atualmente. Deep Learning (em português, Aprendizado Profundo) é uma subárea de Machine

2

Learning (em português, Aprendizado de Máquina) e envolve a criação de modelos com

diversas camadas, nas quais as saídas de uma camada servem de entrada para uma camada

posterior. Cada camada é capaz de realizar transformações lineares e não-lineares aos dados

que recebem em sua entrada, produzindo um resultado na camada de saída do modelo. O

principal diferencial de algoritmos baseados em Machine Learning são suas capacidades de

aprendizado a partir de um conjunto de dados de treinamento. Esses algoritmos são capazes

de extrair padrões e adquirir conhecimento dos dados de entrada durante seu treinamento e,

posteriormente, são utilizados para inferir sobre dados novos afim de se realizar tarefas de

classificação, predição ou reconhecimento de padrões (GOODFELLOW, I.; BENGIO, Y.;

COURVILLE, A., 2016). O grande destaque que proporcionou a difusão de aplicações

baseadas em Deep Learning na atualidade é a forma como o modelo aprende a partir dos

dados. Modelos de DL aprendem features, ou características, dos dados automaticamente

através do seu processo de treinamento (ALOM, M. Z. et al., 2018). Por exemplo, um modelo

capaz de identificar veículos em uma imagem aprende a identificar as features que compõe

um veículo (rodas, capô, formato) para então, combiná-las e determinar se o objeto observado

é classificado como veículo ou não.

Diversas aplicações se beneficiam do uso de Deep Learning. Uma delas consiste na

identificação e localização de determinados objetos em imagens. Para aplicações como essa,

Redes Neurais Convolucionais (em inglês, Convolutional Neural Networks – CNN) geram

ótimos resultados (LECUN, Y.; BENGIO, Y.; HINTON, G., 2015). Redes Neurais

Convolucionais são redes profundas com diversas camadas de convolução e pooling

conectadas e são capazes de extrair features presentes nas imagens, combinar essas features

semanticamente para formar objetos conhecidos e então, classificar determinado objeto de

acordo com o objetivo final da aplicação. As arquiteturas mais comuns de CNN para

classificação de imagens são compostas por várias camadas de convolução, max pooling e, ao

final da rede, camadas totalmente conectadas. Algumas dessas arquiteturas famosas são:

AlexNet (KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E., 2012), VGG

(SIMONYAN, K.; ZISSERMAN, A., 2014) e GoogLeNet (SZEGEDY, C. et al., 2014). Para

aplicações que envolvem a segmentação semântica e localização de objetos em imagens, as

arquiteturas mais comuns de CNN consistem na substituição das camadas totalmente

conectadas por camadas de upsampling e uma camada convolucional na saída das redes,

3

sendo possível gerar as imagens segmentadas ao final da rede. Essas arquiteturas também são

chamadas de fully convolutional networks (FCN). Algumas dessas arquiteturas são: U-Net

(RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015) e FCN (LONG, J.; SHELHAMER,

E.; DARRELL, T., 2014).

Devido à grande flexibilidade proporcionada pelo uso de CNN em diversas aplicações,

é possível que modelos de CNN possam contribuir para redução dos índices de acidentes nas

vias públicas. Diversos cruzamentos possuem câmeras de monitoramento que captam veículos

que trafegam pelas ruas. Um modelo capaz de localizar veículos em imagens provenientes

dessas câmeras poderia sinalizar motoristas que atravessam cruzamentos com problema de

oclusão de que outros veículos também estão passando pelo mesmo cruzamento, aumentando

a atenção de motoristas através da sinalização e, por consequência, reduzindo o risco de

acidentes.

1.2. Objetivos

Este trabalho tem como objetivo o desenvolvimento de um sistema capaz de processar

vídeos de câmeras de monitoramento de cruzamentos, utilizando uma Rede Neural

Convolucional para realizar a segmentação semântica de veículos, sendo possível identificar e

localizar possíveis veículos trafegando pelo cruzamento através dos vídeos e assim aumentar

a segurança nas vias públicas.

Para essa finalidade, a arquitetura de CNN escolhida para o estudo e desenvolvimento

da aplicação é a U-Net, que é uma rede que possibilita a localização e segmentação de objetos

em imagens (RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015). É realizado o

treinamento da rede com um conjunto de imagens de treino, afim de se obter uma rede capaz

de exercer essa funcionalidade.

Para o processamento de vídeos, um sistema é desenvolvido para extração de frames

(em português, quadros) dos vídeos. Um pré-processamento é realizado em cada frame antes

de serem passados para a CNN, que realiza a segmentação semântica e retorna o resultado

processado pelo sistema.

4

Para análise dos resultados, são realizadas comparações da configuração da U-net

implementada em relação a outras arquiteturas de CNN que realizam a função de

segmentação semântica como a FCN-8s e a FCN-16s (LONG, J.; SHELHAMER, E.;

DARRELL, T., 2014). Os resultados são avaliados sobre um conjunto de imagens de teste.

1.3. Organização do Trabalho

No Capítulo 2 é apresentada uma descrição teórica dos conceitos e terminologias

envolvidos no desenvolvimento do trabalho e também trabalhos relacionados ao presente

projeto. A seguir, no Capítulo 3, são descritas todas as atividades realizadas durante o

desenvolvimento do projeto, também são apresentados os resultados obtidos e dificuldades

encontradas durante o desenvolvimento. Finalmente, no Capítulo 4, é apresentada a conclusão

do trabalho e contribuições do projeto realizado.

5

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA

2.1. Considerações Iniciais

Neste capítulo são apresentados diversos conceitos teóricos que são abordados ao

longo do projeto e também são descritas algumas terminologias bastante utilizadas em DL.

Alguns conceitos abordados são: Segmentação Semântica, Redes Neurais Convolucionais

para segmentação semântica em imagens e algumas arquiteturas, Datasets (em português,

conjunto de dados), Regularização, Métrica Intersection over Union (IoU) para avaliação de

desempenho da segmentação semântica, dentre outros. Ao final do capítulo, são apresentados

alguns trabalhos relacionados ao projeto.

2.2. Conceitos e Terminologias

2.2.1. Segmentação Semântica

Segmentação Semântica consiste no processo atribuir uma determinada classe a cada

pixel presente na imagem. Um exemplo de Segmentação Semântica pode ser visto na figura 1.

Figura 1 - Exemplo de Segmentação Semântica

Fonte: https://medium.com/intro-to-artificial-intelligence/semantic-segmentation-udaitys-self-

driving-car-engineer-nanodegree-c01eb6eaf9d

6

Como pode ser observado na figura 1, os pixels que compõe carros são classificados

com uma cor. Os pixels que compõe pessoas são classificados com outra cor, indicando uma

classe diferente de carros. O mesmo pode ser observado para diferentes objetos na imagem,

indicando diferentes classes. Esse processo permite que a aplicação seja capaz de identificar

objetos e localizar a posição desses objetos nas imagens.

2.2.2. Datasets

Datasets são conjuntos de dados utilizados para treinar e testar modelos de Machine

Learning. Existem Datasets com dados em diferentes formatos e cada aplicação requer um

formato específico dependendo da funcionalidade que se deseja atingir. Além disso, como o

aprendizado de CNN é supervisionado, cada dado do Dataset deve ser composto de um par de

elementos: o dado em questão e um label (em português, rótulo) que identifica a classe do

dado para que o modelo seja capaz de calcular o erro entre a predição realizada e a

classificação real do elemento.

Existem três tipos de Datasets:

• Training Set: Consiste do conjunto de dados que é utilizado para o treinamento

do modelo. Os parâmetros do modelo são alterados somente pela avaliação no

conjunto de treinamento

• Validation Set: Consiste de um conjunto de dados utilizado para avaliar o

modelo durante o treinamento e pode ser utilizado para ajustar hiperparâmetros

e evitar Overfitting. Os parâmetros do modelo não são alterados pelo conjunto

de validação.

• Test Set: Consiste do conjunto utilizado para avaliar o modelo após ser treinado

e ajustado. Também representa uma maneira de medir o erro de generalização

do modelo, ou seja, o quanto o modelo aprendeu a prever dados que nunca viu

(GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A., 2016).

Para a funcionalidade de segmentação semântica, os Datasets utilizados são

compostos de um par de imagens: a imagem original e uma imagem, de mesma dimensão que

7

a original, onde cada pixel está indicado com uma classe ou label. Essa imagem de labels é

comumente chamada de ground truth (GT). Um exemplo do par de imagens necessárias para

treinar uma CNN para realizar a segmentação semântica está mostrada na Figura 2.

Figura 2 - Imagem e sua respectiva Ground Truth

Fonte: Adaptado de CORDTS, M. et al. (2016).

Conforme é possível observar na Figura 2, cada objeto diferente na imagem é

representado por uma classe diferente no GT.

2.2.3. Regularização

Regularização é um conjunto de técnicas utilizadas para aumentar a capacidade de

generalização dos modelos e controlar Overfitting, ou seja, quando o modelo possui baixo

valor de erro na previsão de dados do conjunto de treino e alto valor de erro na previsão de

dados dos conjuntos de validação e teste. No caso de Overfitting, o modelo é incapaz de

generalizar para dados novos que nunca viu. Existem diversas técnicas de regularização para

DL e algumas utilizadas neste trabalho são:

• Early Stopping: É utilizado juntamente com o conjunto de validação para

monitorar o erro do mesmo durante o treinamento. Durante o treinamento, o

erro no conjunto de treino e validação tende a diminuir enquanto o modelo

aprende. A partir de certa iteração, o erro no conjunto de validação começa a

subir enquanto que o erro no conjunto de treino continua descendo. Neste

momento, o modelo está começando a apresentar Overfitting. O Early Stopping

faz o treinamento parar, evitando o Overfitting.

8

• Data Augmentation: Consiste na aplicação de transformações ao conjunto de

treinamento, afim de se obter mais amostras para treinar os modelos. Quanto

maior o número de amostras para treinamento, mais o modelo ganha

capacidade de generalização, possibilitando reduzir o Overfitting. Para CNN

que utilizam imagens como dado de treinamento, pode-se aplicar

transformações como: translação, rotação, flips, adição de ruído, dentre outras.

• Dropout: Consiste de uma técnica na qual alguns neurônios selecionados

aleatoriamente em uma camada são ignorados durante o treinamento,

reduzindo a complexidade da rede e forçando que a rede treine com conexões

diferentes entre cada camada. Com a redução da complexidade, ocorre também

a redução de Overfitting. (GOODFELLOW, I.; BENGIO, Y.; COURVILLE,

A., 2016; SRIVASTAVA, N. et al., 2014).

2.2.4. Métrica Intersection over Union Média

A métrica de Intersection over Union avalia a performance do modelo na sua

capacidade de detectar objetos. Essa métrica trabalha com a comparação entre o ground truth

e a previsão gerada pelo modelo. A comparação é feita através das operações de união e

interseção. A IoU é definida como a razão entre a área de sobreposição do objeto previsto

com o ground truth (intersecção) e a área somada do objeto previsto e do ground truth

(união). A visualização do cálculo dessa métrica pode ser vista na Figura 3.

9

Figura 3 - Visualização da IoU

Fonte: Adaptado de https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-

45a511185be1

Na Figura 3, o quadrado em verde representa o GT e o quadrado em vermelho

representa a previsão do modelo. Quando o modelo prevê corretamente certa área de um

objeto, temos a área de intersecção ou True Positive (TP). Quando o modelo prevê uma área

que não pertence ao GT, temos a área de False Positive (FP). Quando o modelo não prevê

uma área que pertence ao GT, temos a área de False Negative (FN). A área de união

corresponde a soma de TP, FP e FN. Matematicamente, a IoU é calculada como:

A IoU atinge valor máximo quando o objeto previsto é exatamente igual ao GT e

atinge valor mínimo quando o objeto previsto é completamente diferente do GT.

A IoU média é calculada como a média entre a IoU de todas as classes do problema.

10

2.3. Redes Neurais Convolucionais e Arquiteturas

2.3.1. Definições

Redes Neurais Convolucionais para segmentação semântica são redes feedforward, ou

seja, são redes nos quais as imagens são propagadas da entrada da rede até a saída. Nas

camadas intermediárias, as imagens passam por camadas de convolução, max pooling,

upsampling e transformações não-lineares por meio de funções de ativação. Na saída, o

resultado previsto pela rede é comparado com o ground truth para se obter o erro entre a

previsão e o resultado real. Com o erro calculado, a rede utiliza algoritmos de

backpropagation para calcular o gradiente da função de erro em relação aos parâmetros

treináveis e utiliza um otimizador para reduzir o erro através da atualização desses parâmetros

(GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A., 2016). Os parâmetros são atualizados

a cada passagem de um Mini-Batch (em português, Mini-Lote) pela rede, que é composto por

partes do conjunto total de treino.

Neste trabalho, o otimizador utilizado é o Adam, que apresenta resultados eficientes na

otimização de parâmetros de CNN (KINGMA, D. P.; BA, J. L., 2014). Também é utilizado a

função de erro Cross-Entropy (CE), que permite o cálculo do erro para múltiplas classes. A

Cross-Entropy calcula o erro para cada pixel da imagem de acordo com a seguinte fórmula:

Onde N representa o número de classes do problema, yi representa o ground truth para

a classe i e ŷi representa a predição do modelo para determinada classe i. A média do erro de

cada pixel na imagem é utilizada como o erro global do problema.

São aplicadas funções de ativação nas camadas de convolução afim de se garantir a

não-linearidade dos resultados produzidos pelas CNN. Neste trabalho, a função de ativação

utilizada nas camadas de convolução é a Rectified Linear Unit (ReLU), que reduz o custo

computacional ao treinar modelos, aumentando a rapidez e eficiência do treinamento

(KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E., 2012). A Figura 4 mostra o gráfico

11

da ReLU. Para valores negativos, a ReLU retorna zero e para valores positivos, retorna o

próprio valor.

Figura 4 - Gráfico da ReLU

Fonte: Autor desta monografia.

Na camada de saída de CNN que resolvem problemas de múltiplas classes, é utilizada

a função de ativação Softmax, que transforma a saída da rede em uma distribuição de

probabilidades entre todas as classes do problema, possibilitando atribuir a classe com maior

probabilidade ao elemento avaliado.

2.3.2. Camadas

Redes Neurais Convolucionais são redes profundas que possuem diversas camadas e a

principal camada responsável pelo seu funcionamento é a Camada de Convolução. A Camada

de Convolução consiste de uma camada que realiza a operação de convolução entre uma

matriz de pixels e um filtro 2D, também chamado de kernel, cuja dimensão é um

hiperparâmetro que pode ser definido. A visualização da operação de convolução está

mostrada na Figura 5, na qual é aplicado um filtro de 3x3 a imagem.

12

Figura 5 - Visualização da operação de Convolução

Fonte: https://anhvnn.wordpress.com/2018/02/01/deep-learning-computer-vision-and-

convolutional-neural-networks/

Cada valor do filtro é um parâmetro treinável da rede e esses filtros são ajustados

durante o treinamento afim de serem capazes de detectar features que compõem a imagem

como arestas, círculos e bordas. A quantidade de filtros em cada camada convolucional

também é um hiperparâmetro que pode ser definido. A saída produzida por cada convolução

entre a imagem e um filtro é uma matriz com dimensão reduzida, chamada de feature map

(em português, mapa de ativação). A saída da camada de convolução produz uma quantidade

de feature maps igual a quantidade de filtros que a camada possui. A quantidade de

parâmetros treináveis em uma camada de convolução é dada pela equação (3).

Onde hf e wf são as dimensões dos filtros da camada, Centrada é o número de canais da

imagem na entrada da camada e Csaída é a quantidade de canais da imagem na saída da

camada.

A Camada de Max Pooling é responsável por reduzir o tamanho da imagem conforme

ela é propagada pela rede, reduzindo o custo computacional necessário para processar grandes

quantidades de dados de múltiplas dimensões. A operação de Max Pooling é realizada para

todos mapas de ativação produzidos pela camada de convolução anterior e pode ser

visualizada na Figura 6.

13

Figura 6 - Visualização da operação de Max Pooling

Fonte: https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

 Esta camada realiza uma varredura nos mapas de ativação, buscando sempre o maior

valor dentro de uma janela definida como hiperparâmetro (no caso da Figura 6, a janela

possui tamanho 2x2). O stride (em português, passo) em que a janela varre a figura também é

definido por um hiperparâmetro (no caso da Figura 6, o stride é 2). Essa operação permite que

as informações mais importantes da imagem, que são as de maiores valores, sejam mantidas

na figura de tamanho reduzido. As camadas de Max Pooling não possuem parâmetros

treináveis.

 Para realizar a reconstrução das imagens de tamanho reduzido pelas camadas de

convolução e max pooling, são utilizadas Camadas de Upsampling. Ao utilizar a operação de

convolução transposta como forma de upsampling, é possível aumentar o tamanho das

imagens através de filtros com parâmetros treináveis. A convolução transposta também possui

hiperparâmetros como tamanho do filtro, stride e quantidade de filtros. A visualização da

convolução transposta está mostrada na Figura 7.

Figura 7 - Visualização da operação de Convolução Transposta

Fonte: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

A Figura 7 mostra a operação de convolução transposta com kernel 2x2 e stride

unitário. Cada elemento da entrada é multiplicado por todos valores do filtro. O resultado

14

final corresponde a soma dos valores produzidos em cada posição da matriz de saída. A

quantidade de parâmetros treináveis em camadas de upsampling que utilizam a convolução

transposta é dada pela equação (3).

2.3.3. Arquiteturas

As arquiteturas mais comuns para CNN que realizam segmentação semântica

consistem de camadas de convolução, seguidas por uma camada de max pooling, seguida por

mais camadas de convolução, seguida por mais uma camada de max pooling e assim por

diante. Esse bloco de camadas é utilizado para extrair features e informações semânticas da

imagem. Em camadas iniciais, são obtidas informações de arestas e bordas que compõem os

objetos, bem como suas localizações nas imagens. Em camadas mais profundas, são obtidas

informações de objetos completos através da combinação de features, porém com baixa

resolução. Esse bloco é chamado de Encoder. Após isso, são utilizadas camadas de

upsampling para produção da segmentação semântica da imagem com mesmo tamanho da

entrada. Esse processo consiste em aumentar a resolução e é chamado de Decoder (XING, Y.;

ZHONG, L.; ZHONG, X., 2020). As arquiteturas discutidas a seguir possuem a estrutura

Encoder-Decoder.

A U-Net, proposta por Ronneberger et al. (2015), é uma arquitetura proposta para

segmentação semântica de imagens biomédicas e pode ser vista na Figura 8.

15

Figura 8 - Arquitetura da U-Net

Fonte: RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015.

A U-Net apresenta dois caminhos simétricos nos quais as imagens são propagadas, o

Contracting Path à esquerda e o Expansive Path à direita, que correspondem à estrutura

Encoder-Decoder. Além disso, são realizadas diversas operações de concatenação de feature

maps do Contracting Path com o Expansive Path, afim de se obter maior precisão na

localização de objetos devido à alta resolução proporcionada pelas camadas iniciais. A saída

da U-Net consiste de uma camada de convolução, que produz uma quantidade de feature

maps igual ao número de classes do problema, onde cada feature map apresenta a

segmentação semântica de sua respectiva classe.

 As arquiteturas FCN-32s, FCN-16s e FCN-8s, propostas por Long et al. (2014),

podem ser vistas na Figura 9.

16

Figura 9 - Arquiteturas FCN-32s, FCN-16s e FCN-8s

Fonte: LONG, J.; SHELHAMER, E.; DARRELL, T., 2014.

Essas arquiteturas se diferem pela operação de upsampling final com diferentes strides

(32, 16 ou 8) e também pelas operações de soma de informação de camadas anteriores, afim

de se obter localização de objetos, presentes em camadas iniciais, com maior precisão. As

operações de soma combinam previsões feitas sobre camadas de pooling intermediárias e a

camada de pooling final.

2.4. Trabalhos Relacionados

 Para realização deste trabalho, são utilizadas as arquiteturas e conceitos propostas por

Long et al. (2014) e Ronneberger et al. (2015) para implementações de sistemas capazes de

reconhecer e localizar veículos.

Além disso, outros trabalhos envolvendo a segmentação semântica foram propostos

como a SegNet, proposta por Badrinarayanan et al. (2015) que é uma arquitetura de CNN do

tipo Encoder-Decoder.

A segmentação semântica também é bastante utilizada na visão computacional de

veículos autônomos. Os conceitos de detecção de objetos são importantes para o

desenvolvimento de veículos autônomos seguros. A predição feita para cada pixel na imagem

garante que o veículo autônomo consiga identificar diversos obstáculos e assim, tomar

decisões baseadas nas informações obtidas, aumentando a segurança. No entanto, o custo

computacional para realizar a segmentação semântica em tempo real é alto e muitos sistemas

embarcados presentes em veículos autônomos não possuem essa capacidade. Treml et al.

17

(2016) propõe técnicas para aumentar a velocidade da segmentação semântica, para que

sistemas computacionais possam reagir rapidamente, através de uma arquitetura do tipo

Encoder-Decoder e assim, aumentar a segurança no trânsito.

2.5. Considerações Finais

Neste capítulo foram apresentados diversos conceitos teóricos relacionados ao projeto

e também foram descritas algumas terminologias utilizadas em DL. Também foram

apresentados algumas das principais arquiteturas de CNN que realizam segmentação

semântica e suas principais camadas. Posteriormente, foram apresentados trabalhos

relacionados ao desenvolvimento do projeto. O capítulo seguinte consiste na descrição do

desenvolvimento do trabalho proposto e na discussão dos resultados obtidos.

18

CAPÍTULO 3: DESENVOLVIMENTO DO

TRABALHO

3.1. Considerações Iniciais

Neste capítulo são apresentados todos os passos envolvidos no desenvolvimento do

projeto. É apresentada a modelagem do sistema que recebe um vídeo como entrada e realiza a

segmentação semântica para localizar veículos nas imagens e as implementações necessárias

para seu desenvolvimento. Também é mostrado o dataset escolhido para treino da CNN e o

benefício de desempenho em relação ao data augmentation aplicado. Posteriormente, é

realizada a implementação e comparação da U-Net com outras configurações de CNN (FCN-

8s e a FCN-16s) para avaliar o desempenho e os resultados obtidos. Por fim, são discutidas as

dificuldades e limitações encontradas durante o desenvolvimento do projeto.

3.2. Descrição do Projeto

3.2.1. Modelagem do Sistema

O trabalho consiste no desenvolvimento de um sistema capaz de receber vídeos

provenientes de câmeras de monitoramento em cruzamentos, afim de se localizar veículos que

trafegam pelas vias através da segmentação semântica. Para isso, foi proposto o sistema

apresentado na Figura 10.

Figura 10 - Modelagem do Sistema

Fonte: Autor desta monografia.

19

A primeira parte do sistema consiste da entrada do vídeo ao sistema. Dentro do

sistema, o vídeo é quebrado em frames e esses frames são armazenados em uma estrutura de

dados do tipo lista, na ordem em que aparecem no vídeo. Também são armazenadas

informações como tempo do vídeo, frames por segundo (fps) do vídeo e número de frames

presentes no vídeo.

A segunda parte do sistema consiste de um pré-processamento realizado nos frames.

Esse pré-processamento consiste em redimensionar a largura e altura dos frames para o

tamanho que a CNN suporta. O pré-processamento também transforma o sistema de cores dos

frames de RGB para Grayscale (em português, níveis de cinza), para que o processamento

realizado pela CNN possua menos custo computacional. Por fim, é aplicada uma

normalização aos frames para reescalar os valores dos pixels entre zero e um e assim,

poderem ser processadas pela CNN.

A terceira parte do sistema consiste da Rede Neural Convolucional, que recebe cada

frame pré-processado para poder realizar a predição sobre os pixels. Cada frame que passa

pela rede tem o valor de seus pixels preditos. A saída da CNN retorna, para cada frame, um

vetor de três dimensões. As duas primeiras representam a largura e altura do frame e a terceira

representa a quantidade de classes do problema, ou seja, cada classe produz uma matriz de

dimensões iguais do frame contendo a segmentação semântica correspondente da classe em

questão.

A quarta parte do sistema corresponde a geração de uma lista com os frames

processados pela rede. As classes separadas em cada matriz são juntadas em uma única matriz

de mesmo tamanho. É atribuída uma cor diferente a cada classe diferente para facilitar a

visualização e distinção entre cada classe predita. Ao final do processo, é obtido uma lista de

todos frames processados, onde a cor de cada pixel indica a classe que foi atribuída aquele

pixel. Com os frames processados, um vídeo é reconstruído com mesmo tempo do vídeo

original, mesmo fps e mesma quantidade de frames. O vídeo com a localização dos veículos

preditas pela rede é retornado como saída do sistema. Essa ferramenta é um protótipo, que

permite validar a aplicação do sistema de detecção veículos, e assim, futuramente, poderia

sinalizar e evitar uma possível colisão.

20

3.2.2. Linguagem de Programação

A linguagem de programação escolhida para o desenvolvimento do projeto é a

linguagem Python. Python possui diversas bibliotecas para manipulação e processamento de

imagens, facilitando a manipulação das estruturas de dados que compõem esse tipo de dado.

Além disso, Python possui uma Application Programming Interface (API) para

implementação e desenvolvimento de redes neurais, chamado Keras. Keras é uma API de alto

nível que roda em cima de TensorFlow, que é uma plataforma de Machine Learning. A

utilização do Keras em conjunto com o TensorFlow permite a criação de modelos altamente

configuráveis e de fácil implementação. Além disso, o treinamento dos modelos pode ser

acelerado por unidades de processamento gráfico (GPU) para aumentar a velocidade do

treinamento (CHOLLET, F. et al., 2015; ABADI, M. et al., 2015).

3.2.3. Plataforma de Desenvolvimento e Recursos Computacionais

O sistema foi implementado e testado no sistema operacional de 64 bits Windows 10

Pro Versão 10.0.19041. Os recursos de hardware são:

• Processador: Intel® Core™ i7-6820HK CPU @ 2.70GHz

• Memória RAM: 16.0 GB

• GPU: NVIDIA GeForce GTX 1070 – 8.0 GB

Para desenvolvimento do software, foi utilizado o ambiente de desenvolvimento

integrado (IDE) Spyder, que é uma plataforma open source para desenvolvimento de códigos

em Python. As versões utilizadas estão listadas a seguir:

• Versão Spyder IDE: 4.2.5

• Versão Python: 3.7.9

• Versão Keras: 2.4.3

21

3.3. Descrição das Atividades Realizadas

3.3.1. Escolha e Processamento do Dataset

Para realizar o treinamento de CNN é necessário um dataset de imagens de veículos e

suas respectivas GT. Foram analisados dois datasets para o desenvolvimento do trabalho e

apenas um foi escolhido.

O primeiro consiste do dataset de Voigtlaender et al. (2019) chamado de KITTI Multi-

Object and Segmentation (KITTI MOTS). Esse dataset consiste de 8008 imagens RGB para

treino, onde cada imagem possui tamanho aproximado de 1242x375 e um respectivo GT de

mesma dimensão. As imagens de GT possuem rótulos que identificam background, carros,

pessoas e objetos diferentes (caminhões, bicicletas, dentre outros). Um exemplo das imagens

do KITTI MOTS Dataset é mostrado na Figura 11.

Figura 11 - Imagens do KITTI MOTS Dataset

Fonte: Adaptado de Voigtlaender et al. (2019).

O segundo consiste do dataset de Cordts et al. (2016) chamado de Cityscapes Dataset.

Esse dataset consiste de 2975 imagens RGB para treino, onde cada imagem possui tamanho

2048x1024 e um respectivo GT de mesma dimensão. Além disso, o dataset possui um

conjunto de validação com 500 imagens diferentes das imagens de treino e com mesmo

tamanho e rótulos no GT. As imagens de GT possuem rótulos que indicam 30 classes

22

diferentes (carros, caminhões, motos, pessoas, ruas, dentre outras). Um exemplo das imagens

do Cityscapes Dataset é mostrado na Figura 12.

Figura 12 - Exemplo do Cityscapes Dataset

Fonte: Adaptado de Cordts et al. (2016).

Para este trabalho, foi escolhido a utilização do Cityscapes Dataset pois ele apresenta

uma maior variabilidade nos tipos de veículos rotulados, devido a quantidade maior de classes

rotuladas. No entanto, ele apresenta uma desvantagem em relação ao KITTI MOTS devido a

menor quantidade de imagens.

Com o dataset escolhido, foi realizado um processamento em todas as imagens afim

de se padronizar o dataset. O processamento consiste em remover as bordas das imagens, nas

quais aparecem a frente do carro que fotografou as ruas, para que isso não influencie no

treinamento da CNN. Também foi realizada uma filtragem nas 30 classes para manter apenas

11 classes que representam todos os tipos de veículos e pedestres. Isso foi feito para remover

classes que não fariam sentido para o desenvolvimento do sistema (prédios, placas, árvores,

dentre outras) e para reduzir o custo computacional ao processar múltiplas classes. As

imagens também tiveram a dimensão reduzida para reduzir o custo computacional. A lista

com todas as 11 classes restantes e seus respectivos labels está mostrada na Tabela 1.

23

 Tabela 1 – Lista de classes e seus valores de labels

Valor do pixel no GT

(label)

Tipo

0 Background

1 Pedestres

2 Ciclistas/Motoqueiros

3 Carros

4 Caminhões

5 Ônibus

6 Trailers

7 Carretas

8 Trem

9 Motos

10 Bicicletas

A Figura 13 mostra uma imagem e seu GT após o processamento realizado.

Figura 13 - Imagem e GT após o processamento

Fonte: Adaptado de Cordts et al. (2016).

Por fim, foram definidos os datasets de treino, validação e teste. As 500 imagens de

validação do Cityscapes Dataset foram separadas para serem utilizadas como o conjunto de

teste. Foram separadas 300 imagens do conjunto de treino para serem utilizadas como o

conjunto de validação, restando 2675 imagens para o conjunto de treino. A distribuição da

quantidade de imagens por classes nos diferentes conjuntos pode ser vista na Figura 14.

24

Figura 14 - Distribuição da quantidade de imagens por classes nos datasets

Fonte: Autor desta monografia.

3.3.2. Data Augmentation

Afim de se aumentar a quantidade de imagens de treino e reduzir o overfitting, foram

aplicados três métodos de data augmentation: flip horizontal, translação e adição de ruído. As

transformações realizadas foram aplicadas somente no conjunto de treino e principalmente em

imagens que contém classes com baixa ocorrência, para aumentar a frequência dessas classes.

O flip horizontal consiste no espelhamento horizontal da imagem e sua GT. As

imagens ficam invertidas em relação ao eixo vertical.

A translação consiste em um deslocamento aplicado a todos os pixels da imagem. Foi

implementado a translação para direita, esquerda e para cima. Um valor aleatório entre 40 e

128 pixels é utilizado para definir o tamanho do deslocamento aplicado a imagem e a direção

é escolhida aleatoriamente entre cima, direita e esquerda. O limite inferior 40 foi definido

para não gerar imagens muito próximas à original e o limite superior 128 foi definido para

não gerar imagens com deslocamento muito grande que retiram objetos da cena. A translação

é aplicada tanto na imagem quanto no GT.

O ruído aplicado consiste na alteração aleatória de valores dos pixels da imagem para

255 (branco) ou 0 (preto), afim de se produzir imagens com deformações. Cada pixel da

imagem possui uma probabilidade de 5% de ser alterado para 255 ou 0.

Na Figura 15 estão mostrados exemplos do flip horizontal, translação para direita e

ruído aplicado nas imagens. Após as transformações, o conjunto de treino ficou composto por

8097 imagens e GT. A distribuição da quantidade de imagens de treino por classe após a

aplicação do data augmentation está mostrada na Figura 16.

25

Figura 15 - Exemplos da aplicação do data augmentation

Fonte: Adaptado de Cordts et al. (2016).

Figura 16 – Quantidade de imagens por classe após o data augmentation

 Fonte: Autor desta monografia.

26

3.3.3. Implementação do Custom Data Generator

Para realizar o treinamento da CNN com conjuntos de dados muito grandes que não

cabem inteiramente na memória RAM, foi necessário a implementação de um Data

Generator, que gera batchs de imagens e suas GT durante o treinamento, sem que seja

necessário carregar todos os dados ao mesmo tempo na memória RAM. Para isso, foi

utilizado a classe Sequence presente no pacote de utilidades do Keras (keras.utils).

Foi implementado uma classe chamada de CustomDataGenerator, que é herdada da

classe Sequence do Keras. O tamanho do lote que será gerado durante o treinamento é

passado como parâmetro (chamado de batch_size) ao se instanciar o objeto da classe. Com

isso, cada lote gerado possui uma quantidade de batch_size imagens e GT, que são lidas do

disco durante o treinamento da rede.

Cada imagem é lida em grayscale, para reduzir o custo computacional do treinamento.

Também é aplicado normalização às imagens de treinamento através do método normalize do

pacote de utilidades do Keras. Cada GT também é lido em grayscale, onde cada pixel possui

um valor de label entre zero e dez. Para poder ser utilizado na rede, é necessário transformar

cada GT no formato one-hot-encoding. Isso é feito utilizando o método to_categorical do

pacote de utilidade do Keras. Com isso, cada GT possui o formato HxWx11, onde H e W são

as dimensões da imagem e o 11 representa as onze classes do problema, no formato one-hot-

enconding. Todos esses passos são aplicados a cada lote gerado. O objeto desta classe é

passado como parâmetro para o método que realiza o treinamento no Keras.

3.3.4. Implementação dos Modelos de CNN

Para realizar as implementações dos modelos, foi necessário definir um tamanho fixo

das imagens de entrada que serão processadas pela rede. Para isso, foram analisados os

tamanhos 128x128, 256x256 e 512x512. Como o dataset possui muitos objetos de diferentes

classes, a redução da resolução para 128x128 poderia prejudicar a classificação de objetos que

estão muito distantes nas imagens, pela pouca quantidade de pixels que os compõe. Para

imagens com resolução de 256x256, os objetos ficam bem definidos e a visualização e

distinção entre eles é facilitada em relação à 128x128. Para imagens de 512x512, foi

27

verificado que o tempo de treinamento aumenta muito em relação à 256x256 (na ordem de

horas) e não apresenta ganho considerável de performance. Além disso, o tamanho de lote

máximo suportado pela memória RAM é reduzido em relação a 256x256. Assim, foi

escolhido utilizar o tamanho 256x256.

Os modelos foram implementados utilizando os pacotes keras.models e keras.layers.

A Tabela 2 mostra a implementação da U-Net, indicando as camadas utilizadas e alguns de

seus parâmetros, a entrada que cada camada recebe, o formato da saída de cada camada e a

quantidade de parâmetros treináveis de cada camada. Foi utilizado o parâmetro que define a

função de ativação activation=’relu’ para todas camadas de convolução, exceto para a saída,

que utiliza activation=’softmax’. Também foi utilizado o parâmetro padding=’same’ para

manter o tamanho da imagem na entrada da convolução igual o tamanho na saída.

 Tabela 2 – Implementação da U-Net

Camadas

Entrada

Formato da

Saída

Número de

Parâmetros

Treináveis

1)Entrada - 256x256x1 0

2)Conv2D – filters=32, kernel_size=(3,3)

3)Conv2D – filters=32, kernel_size=(3,3)

4)Dropout – rate=0.1

5)MaxPooling2D – pool_size=(2,2)

1

2

3

4

256x256x32

256x256x32

256x256x32

128x128x32

320

9248

0

0

6)Conv2D – filters=64, kernel_size=(3,3)

7)Conv2D – filters=64, kernel_size=(3,3)

8)Dropout – rate=0.1

9)MaxPooling2D – pool_size=(2,2)

5

6

7

8

128x128x64

128x128x64

128x128x64

64x64x64

18496

36928

0

0

10)Conv2D – filters=128, kernel_size=(3,3)

11)Conv2D – filters=128, kernel_size=(3,3)

12)Dropout – rate=0.2

13)MaxPooling2D – pool_size=(2,2)

9

10

11

12

64x64x128

64x64x128

64x64x128

32x32x128

73856

147584

0

0

14)Conv2D – filters=256, kernel_size=(3,3)

15)Conv2D – filters=256, kernel_size=(3,3)

16)Dropout – rate=0.3

17)MaxPooling2D – pool_size=(2,2)

13

14

15

16

32x32x256

32x32x256

32x32x256

16x16x256

295168

590080

0

0

18)Conv2D – filters=512, kernel_size=(3,3)

19)Conv2D – filters=512, kernel_size=(3,3)

20)Dropout – rate=0.5

17

18

19

16x16x512

16x16x512

16x16x512

1180160

2359808

0

21)Conv2DTranspose – filters=256,

kernel_size=(2,2), strides=(2,2)

22)concatenate

23)Conv2D – filters=256, kernel_size=(3,3)

20

21, 16

22

32x32x256

32x32x512

32x32x256

524544

0

1179904

28

24)Conv2D – filters=256, kernel_size=(3,3)

25)Dropout – rate=0.4

23

24

32x32x256

32x32x256

590080

0

26)Conv2DTranspose – filters=128,

kernel_size=(2,2), strides=(2,2)

27)concatenate

28)Conv2D – filters=128, kernel_size=(3,3)

29)Conv2D – filters=128, kernel_size=(3,3)

30)Dropout – rate=0.3

25

26, 12

27

28

29

64x64x128

64x64x256

64x64x128

64x64x128

64x64x128

131200

0

295040

147584

0

31)Conv2DTranspose – filters=64,

kernel_size=(2,2), strides=(2,2)

32)concatenate

33)Conv2D – filters=64, kernel_size=(3,3)

34)Conv2D – filters=64, kernel_size=(3,3)

35)Dropout – rate=0.2

30

31, 8

32

33

34

128x128x64

128x128x128

128x128x64

128x128x64

128x128x64

32832

0

73792

36928

0

36)Conv2DTranspose – filters=32,

kernel_size=(2,2), strides=(2,2)

37)concatenate

38)Conv2D – filters=32, kernel_size=(3,3)

39)Conv2D – filters=32, kernel_size=(3,3)

40)Dropout – rate=0.2

35

36, 4

37

38

39

256x256x32

256x256x64

256x256x32

256x256x32

256x256x32

8224

0

18464

9248

0

41)Conv2D – filters=11, kernel_size=(1,1) 40 256x256x11 363

42)Saída 40 256x256x11 0

A U-Net implementada apresenta 7759851 parâmetros treináveis. A Tabela 3 e a

Tabela 4 mostram as implementações das redes FCN-16s e FCN-8s respectivamente. As

mesmas configurações para função de ativação e padding da U-Net foram utilizadas.

 Tabela 3 - Implementação da FCN-16s

Camadas

Entrada

Formato da

Saída

Número de

Parâmetros

Treináveis

1)Entrada - 256x256x1 0

2)Conv2D – filters=16, kernel_size=(3,3)

3)Conv2D – filters=16, kernel_size=(3,3)

4)Dropout – rate=0.1

5)MaxPooling2D – pool_size=(2,2)

1

2

3

4

256x256x16

256x256x16

256x256x16

128x128x16

160

2320

0

0

6)Conv2D – filters=32, kernel_size=(3,3)

7)Conv2D – filters=32, kernel_size=(3,3)

8)Dropout – rate=0.1

9)MaxPooling2D – pool_size=(2,2)

5

6

7

8

128x128x32

128x128x32

128x128x32

64x64x32

4640

9248

0

0

10)Conv2D – filters=64, kernel_size=(3,3)

11)Conv2D – filters=64, kernel_size=(3,3)

9

10

64x64x64

64x64x64

18496

36928

29

12)Conv2D – filters=64, kernel_size=(3,3)

13)Dropout – rate=0.2

14)MaxPooling2D – pool_size=(2,2)

11

12

13

64x64x64

64x64x64

32x32x64

36928

0

0

15)Conv2D – filters=128, kernel_size=(3,3)

16)Conv2D – filters=128, kernel_size=(3,3)

17)Conv2D – filters=128, kernel_size=(3,3)

18)Dropout – rate=0.3

19)MaxPooling2D – pool_size=(2,2)

14

15

16

17

18

32x32x128

32x32x128

32x32x128

32x32x128

16x16x128

73856

147584

147584

0

0

20)Conv2D – filters=128, kernel_size=(3,3)

21)Conv2D – filters=128, kernel_size=(3,3)

22)Conv2D – filters=128, kernel_size=(3,3)

23)Dropout – rate=0.4

24)MaxPooling2D – pool_size=(2,2)

19

20

21

22

23

16x16x128

16x16x128

16x16x128

16x16x128

8x8x128

147584

147584

147584

0

0

25)Conv2D – filters=1024, kernel_size=(7,7)

26)Dropout – rate=0.5

27)Conv2D – filters=1024, kernel_size=(1,1)

28)Dropout – rate=0.5

24

25

26

27

8x8x1024

8x8x1024

8x8x1024

8x8x1024

6423552

0

1049600

0

29)Conv2DTranspose – filters=11,

kernel_size=(2,2), strides=(2,2)

30) Conv2D – filters=11, kernel_size=(1,1)

31)Add

28

19

30,29

16x16x11

16x16x11

16x16x11

45067

1419

0

32)Conv2DTranspose – filters=11,

kernel_size=(16,16), strides=(16,16)

31

256x256x11

30987

33)Saída 31 256x256x11 0

 Tabela 4 - Implementação da FCN-8s

Camadas

Entrada

Formato da

Saída

Número de

Parâmetros

Treináveis

1)Entrada - 256x256x1 0

2)Conv2D – filters=16, kernel_size=(3,3)

3)Conv2D – filters=16, kernel_size=(3,3)

4)Dropout – rate=0.1

5)MaxPooling2D – pool_size=(2,2)

1

2

3

4

256x256x16

256x256x16

256x256x16

128x128x16

160

2320

0

0

6)Conv2D – filters=32, kernel_size=(3,3)

7)Conv2D – filters=32, kernel_size=(3,3)

8)Dropout – rate=0.1

9)MaxPooling2D – pool_size=(2,2)

5

6

7

8

128x128x32

128x128x32

128x128x32

64x64x32

4640

9248

0

0

10)Conv2D – filters=64, kernel_size=(3,3)

11)Conv2D – filters=64, kernel_size=(3,3)

12)Conv2D – filters=64, kernel_size=(3,3)

13)Dropout – rate=0.2

14)MaxPooling2D – pool_size=(2,2)

9

10

11

12

13

64x64x64

64x64x64

64x64x64

64x64x64

32x32x64

18496

36928

36928

0

0

15)Conv2D – filters=128, kernel_size=(3,3) 14 32x32x128 73856

30

16)Conv2D – filters=128, kernel_size=(3,3)

17)Conv2D – filters=128, kernel_size=(3,3)

18)Dropout – rate=0.3

19)MaxPooling2D – pool_size=(2,2)

15

16

17

18

32x32x128

32x32x128

32x32x128

16x16x128

147584

147584

0

0

20)Conv2D – filters=128, kernel_size=(3,3)

21)Conv2D – filters=128, kernel_size=(3,3)

22)Conv2D – filters=128, kernel_size=(3,3)

23)Dropout – rate=0.4

24)MaxPooling2D – pool_size=(2,2)

19

20

21

22

23

16x16x128

16x16x128

16x16x128

16x16x128

8x8x128

147584

147584

147584

0

0

25)Conv2D – filters=1024, kernel_size=(7,7)

26)Dropout – rate=0.5

27)Conv2D – filters=1024, kernel_size=(1,1)

28)Dropout – rate=0.5

24

25

26

27

8x8x1024

8x8x1024

8x8x1024

8x8x1024

6423552

0

1049600

0

29)Conv2DTranspose – filters=11,

kernel_size=(2,2), strides=(2,2)

30) Conv2D – filters=11, kernel_size=(1,1)

31)Add

28

19

30,29

16x16x11

16x16x11

16x16x11

45067

1419

0

32)Conv2DTranspose – filters=11,

kernel_size=(2,2), strides=(2,2)

33) Conv2D – filters=11, kernel_size=(1,1)

34)Add

31

14

33,32

32x32x11

32x32x11

32x32x11

495

715

0

35)Conv2DTranspose – filters=11,

kernel_size=(8,8), strides=(8,8)

34

256x256x11

7755

36)Saída 34 256x256x11 0

A FCN-16s apresenta 8471121 parâmetros treináveis e a FCN-8s apresenta 8449099

parâmetros treináveis.

3.4. Resultados Obtidos

3.4.1. Treinamento dos Modelos e Resultados

Os modelos foram treinados com configurações iguais para que seu desempenho fosse

analisado nas mesmas condições. O parâmetro batch_size do Custom Data Generator foi

definido para 16. Os parâmetros dos modelos: loss=’categorical_crossentropy’ e

optimizer=’adam’ foram definidos para utilizar a função de erro Cross-Entropy e o

otimizador Adam. A métrica para avaliação de desempenho é a média IoU e ela foi definida

através do parâmetro metrics=[tf.keras.metrics.MeanIoU(num_classes=11)]. Além dos

31

parâmetros, foi utilizado um callback de Early Stopping que termina o treinamento caso não

ocorra melhora no erro de validação do modelo durante 8 épocas. O número total de épocas

de treinamento foi definido para 50.

O modelo da U-Net foi avaliado em relação à aplicação de data augmentation ao

conjunto de treinamento. Para isso, o modelo foi treinado com o conjunto de treino padrão e

com o conjunto de treino com data augmentation. Os gráficos do erro e da IoU média por

épocas estão mostrados na Figura 17. Além disso, a Tabela 5 apresenta os resultados do erro e

da IoU média avaliados no conjunto de treino, validação e teste na melhor configuração

obtida com o treino.

Figura 17 - Gráficos do Erro e da IoU Média para U-Net

Fonte: Autor desta monografia.

32

Tabela 5 - Erro e IoU Média nos diferentes conjuntos para a U-Net

 Erro IoU Média

 Treino Validação Teste Treino Validação Teste

U-Net sem

data

augmentation

0.0906

0.1243

0.1570

0.5994

0.5185

0.5241

U-Net com

data

augmentation

0.0739

0.1085

0.1461

0.6228

0.7271

0.7222

De acordo com os resultados obtidos, a aplicação de data augmentation ao conjunto de

treino beneficia o desempenho do modelo para localizar os veículos. Isso é proveniente da

maior quantidade de dados que o modelo possui para treinar, possibilitando maior

generalização, como é observado nos altos valores de IoU média obtidos para os conjuntos de

validação e teste. Além disso, o modelo treinado com data augmentation converge em menos

épocas que o modelo treinado com o conjunto de treino padrão.

Para comparar o desempenho da U-Net com outras CNN, foram treinadas as redes

FCN-16s e FCN-8s com data augmentation afim de se observar os resultados para diferentes

arquiteturas de CNN. A Figura 18 mostra os gráficos do erro da IoU Média para as redes

FCN-8s e FCN-16s. A Tabela 6 apresenta os resultados do erro e da IoU média avaliados no

conjunto de treino, validação e teste na melhor configuração obtida com o treino para essas

redes.

Tabela 6 - Erro e IoU Média nos diferentes conjuntos para as FCN

 Erro IoU Média

 Treino Validação Teste Treino Validação Teste

FCN-16s 0.0799 0.1243 0.1556 0.6624 0.5407 0.5395

FCN-8s 0.0778 0.1201 0.1481 0.6474 0.5379 0.5356

33

Figura 18 - Gráficos do Erro e da IoU Média para FCN-16s e FCN-8s

Fonte: Autor desta monografia.

De acordo com os resultados mostrados nas Tabelas 5 e 6, o desempenho da U-Net é

superior aos modelos FCN-16s e FCN-8s para a segmentação semântica. Os modelos de

FCN-16s e FCN-8s apresentam menor IoU média e menor capacidade de generalização em

imagens diferentes do conjunto de treino. Além disso, o modelo da U-Net apresenta menor

quantidade de parâmetros treináveis, proporcionando redução no custo computacional ao

treinar os modelos.

3.4.2. Resultados do Sistema

O modelo da U-Net com melhor desempenho foi integrado ao sistema descrito na

seção 3.2.1 para avaliar os resultados em imagens de vídeos reais. Para isso, foram utilizados

vídeos provenientes de câmeras de cruzamentos para que o sistema possa processar e

34

identificar veículos. Cada classe prevista pelo modelo é definida por uma cor e a legenda está

mostrada na Figura 19.

Figura 19 - Legenda das classes da segmentação semântica

Fonte: Autor desta monografia.

Os resultados da segmentação semântica nos vídeos estão mostrados nas Figuras 20 e

21.

Figura 20 - Resultados da segmentação semântica em vídeo 1

Fonte: Adaptado de https://g1.globo.com/sp/sao-carlos-regiao/noticia/2021/01/30/videos-cruzamento-no-

centro-de-sao-carlos-tem-3-acidentes-nos-ultimos-3-dias.ghtml

35

Figura 21 - Resultados da segmentação semântica em vídeo 2

Fonte: Adaptado de https://www.youtube.com/watch?v=55XfxCPzD-s;

https://www.youtube.com/watch?v=3B9d4Z4p18g

Com base nos resultados obtidos da segmentação semântica realizada, é possível ver

que o sistema é capaz de localizar os veículos presentes nos vídeos durante sua locomoção.

Além disso, o sistema apresenta maior facilidade na localização de carros, pertencentes a

classe 3, devido a grande quantidade de imagens dessa classe no dataset de treino. Em razão

da menor quantidade de imagens de outras classes, o sistema apresenta maior dificuldade em

reconhecê-las. No geral, é possível concluir que o sistema apresenta capacidade para detectar

veículos em movimento nos cruzamentos, sendo possível sinalizar possíveis riscos aos

motoristas que trafegam por eles, aumentando a segurança no trânsito.

3.5. Dificuldades e Limitações

A principal dificuldade encontrada no desenvolvimento do projeto foi a determinação

de um dataset adequado para o treinamento da CNN. Para aplicações que utilizam redes

https://www.youtube.com/watch?v=55XfxCPzD-s

36

neurais, é de extrema importância que o dataset utilizado para o treinamento corresponda aos

dados reais nos quais a rede será utilizada. Para aplicações que detectam objetos via

segmentação semântica, os datasets devem ser compostos pelas imagens e suas respectivas

GT com todos pixels anotados por labels correspondentes às classes. O processo de anotação

de imagens é um processo custoso que consome muito tempo devido a grande quantidade de

dados necessários para treinamento e, por essa questão, foi escolhido um dataset

completamente anotado para realização do projeto. Além disso, o dataset escolhido possui a

limitação de não conter imagens provenientes de câmeras de monitoramento em cruzamentos

e, portanto, não é completamente adequado para o desenvolvimento de projetos reais com

essa finalidade.

Afim de se desenvolver um sistema com a finalidade de se detectar objetos por

câmeras de monitoramento em cruzamentos, o ideal seria obter uma grande quantidade de

imagens reais provenientes das câmeras e realizar o processo de anotação nessas imagens,

com o propósito de gerar um dataset especifico para essa situação e assim aumentar o

desempenho na detecção.

3.6. Considerações Finais

Neste capítulo foi abordado o desenvolvimento do trabalho e seus resultados. Foi

realizada uma descrição da modelagem do sistema para detectar veículos em vídeos. Foram

apresentados os recursos computacionais e a linguagem de programação utilizada para

desenvolvimento do projeto. Também foram descritas todas as implementações realizadas

para a construção do projeto. Posteriormente, foram apresentados os resultados obtidos com o

treinamento das CNN e os resultados gerais do sistema. Por fim, foram discutidas as

dificuldades encontradas durante o desenvolvimento do projeto. O capítulo seguinte consiste

nas conclusões proporcionadas pelo desenvolvimento do projeto.

37

CAPÍTULO 4: CONCLUSÃO

4.1. Contribuições

A proposta do trabalho desenvolvido consiste no aumento da segurança no trânsito,

através da utilização de sistemas inteligentes capazes de localizar veículos. Para isso, o

projeto desenvolvido apresenta potencial para realização dessa tarefa. Com a utilização de

conjuntos de dados mais específico e maior poder computacional para o treinamento de

modelos de CNN, o sistema apresentado poderia ser utilizado para realizar o monitoramento

das vias e assim contribuir com o aumento da segurança e a redução nos acidentes de trânsito.

O trabalho desenvolvido proporcionou ao autor um grande entendimento de como

sistemas que utilizam Deep Learning funcionam, através de diversos experimentos realizados

com os modelos de redes neurais convolucionais para realização do projeto. Além disso, o

projeto proporcionou o aprendizado de uma nova linguagem de programação ao autor, que

não possuía conhecimentos prévios em Python.

38

REFERÊNCIAS

ABADI, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Disponível em: <https://www.tensorflow.org/>. Acesso em: 20 jun. 2021.

ALOM, M. Z. et al. The History began from AlexNet: A Comprehensive Survey on Deep

Learning Approaches, 2018. Disponível em <https://arxiv.org/abs/1803.01164>. Acesso em:

20 jun. 2021.

BADRINARAYANAN, V.; KENDALL, A.; CIPOLLA, R. SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation, 2015. Disponível em

<https://arxiv.org/abs/1511.00561>. Acesso em: 20 jun. 2021.

CHOLLET, F. et al. Keras, 2015. Disponível em <https://keras.io/>. Acesso em: 20 jun.

2021.

CORDTS, M. et al. The Cityscapes Dataset for Semantic Urban Scene Understanding, in

Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Disponível em <https://www.cityscapes-dataset.com/>. Acesso em: 20 jun. 2021.

DATASUS; VIAS SEGURAS. Estatísticas nacionais de acidentes de trânsito, 2020.

Disponível em <http://vias-seguras.com/os_acidentes/estatisticas/estatisticas_nacionais>.

Acesso em: 20 jun. 2021.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning, MIT Press, 2016.

Disponível em <https://www.deeplearningbook.org/>. Acesso em: 20 jun. 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Frota de

Veículos, 2006, 2020. Disponível em

<https://cidades.ibge.gov.br/brasil/pesquisa/22/28120?ano=2020&indicador=28120&tipo=gra

fico>. Acesso em: 20 jun. 2021.

KINGMA, D. P.; BA, J. L. Adam: A Method for Stochastic Optimization, 2014.

Disponível em <https://arxiv.org/abs/1412.6980>. Acesso em: 20 jun. 2021.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification with Deep

Convolutional Neural Networks, 2012. Disponível em

<https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>.

Acesso em: 20 jun. 2021.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep Learning. Nature, v. 521, p. 436-444, 2015.

Disponível em <https://www.researchgate.net/publication/277411157_Deep_Learning>.

Acesso em: 20 jun. 2021.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully Convolutional Networks for Semantic

Segmentation, 2014. Disponível em <https://arxiv.org/abs/1411.4038v1>. Acesso em 20 jun.

2021.

https://www.tensorflow.org/
https://arxiv.org/abs/1803.01164
https://arxiv.org/abs/1511.00561
https://keras.io/
https://www.cityscapes-dataset.com/
https://www.deeplearningbook.org/
https://cidades.ibge.gov.br/brasil/pesquisa/22/28120?ano=2020&indicador=28120&tipo=grafico
https://cidades.ibge.gov.br/brasil/pesquisa/22/28120?ano=2020&indicador=28120&tipo=grafico
https://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.researchgate.net/publication/277411157_Deep_Learning

39

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-Net: Convolutional Networks for

Biomedical Image Segmentation, 2015. Disponível em <https://arxiv.org/abs/1505.04597>.

Acesso em: 20 jun. 2021

SIMONYAN, K.; ZISSERMAN, A. Very Deep Convolutional Networks for Large-Scale

Image Recognition, 2014. Disponível em <https://arxiv.org/abs/1409.1556v1>. Acesso em:

20 jun. 2021.

SRIVASTAVA, N. et al. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting, 2014. Disponível em <https://jmlr.org/papers/v15/srivastava14a.html>. Acesso

em: 20 jun. 2021.

SZEGEDY, C. et al. Going Deeper with Convolutions, 2014. Disponível em

<https://arxiv.org/abs/1409.4842>. Acesso em: 20 jun. 2021.

TREML, M. et al. Speeding up Semantic Segmentation for Autonomous Driving, 2016.

Disponível em

<https://www.researchgate.net/publication/309935608_Speeding_up_Semantic_Segmentation

_for_Autonomous_Driving>. Acesso em: 20 jun. 2021.

VOIGTLAENDER, P. et al. MOTS: Multi-Object Tracking and Segmentation, 2019.

Disponível em <http://www.cvlibs.net/datasets/kitti/eval_mots.php>. Acesso em: 20 jun.

2021.

XING, Y.; ZHONG, L.; ZHONG, X. An Encoder-Decoder Network Based FCN

Architecture for Semantic Segmentation, 2020. Disponível em

<https://www.hindawi.com/journals/wcmc/2020/8861886/>. Acesso em: 20 jun. 2021.

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1409.1556v1
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1409.4842
https://www.researchgate.net/publication/309935608_Speeding_up_Semantic_Segmentation_for_Autonomous_Driving
https://www.researchgate.net/publication/309935608_Speeding_up_Semantic_Segmentation_for_Autonomous_Driving
http://www.cvlibs.net/datasets/kitti/eval_mots.php
https://www.hindawi.com/journals/wcmc/2020/8861886/

