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Resumo

Durante as Ultimas décadas, o numero de veiculos automotivos no Brasil tem crescido
gradativamente. Com o aumento do nimero de veiculos que circulam pelas vias, o indice de
acidentes de transito também aumenta. Devido ao avanc¢o do poder computacional nos ultimos
anos, a area de Deep Learning tem ganhado destaque pela sua capacidade de resolver
problemas de reconhecimento de padrGes e localizar objetos. Afim de se diminuir a
quantidade de acidentes de transitos, pode-se utilizar abordagens de Deep Learning. Ao
utilizar modelos de Deep Learning, é possivel desenvolver um sistema capaz de reconhecer
padrdes de veiculos, identificando e localizando os mesmos em imagens. O projeto consiste
no desenvolvimento de um sistema que utiliza Redes Neurais Convolucionais para localizacao
de veiculos em videos de cameras que monitoram cruzamentos, afim de se sinalizar
motoristas de que outros veiculos percorrem as vias, aumentando a seguranca no transito. A
arquitetura de Rede Neural Convolucional utilizada para o desenvolvimento é a U-Net, que é
uma rede que localiza objetos através da segmentacdo semantica dos mesmos. Neste trabalho,
é realizada a modelagem do sistema proposto, que consiste no processamento de um video de
entrada, na qual a Rede Neural Convolucional realiza a segmentacdo semantica dos possiveis
veiculos presentes no video, obtendo suas localiza¢cdes. Para o desenvolvimento do projeto, é
necessario realizar o treinamento do modelo. E escolhido um conjunto de dados para compor
0s conjuntos de treino, validacdo e de teste. O desempenho do modelo é medido com a
métrica Intersect over Union, que possibilita identificar se 0 modelo apresenta boa precisao.
Além do modelo da U-Net, sdo implementados outros modelos de Redes Neurais
Convolucionais para comparar o resultado em diferentes arquiteturas e determinar se a rede
escolhida apresenta bons resultados para essa funcionalidade. Os resultados do sistema sdo
apresentados no final do trabalho, indicando se o sistema apresenta potencial para aumentar a

seguranca no transito.

Palavras-chave: Visdo Computacional; Redes Neurais; Deep Learning; Segmentacdo

Semantica; Processamento de Imagens.
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CAPITULO 1: INTRODUCAO

1.1. Contextualizacao e Motivacéao

Durante as Ultimas décadas, o nimero de veiculos automotivos no Brasil tem crescido
gradativamente. De acordo com os dados do Instituto Brasileiro de Geografia e Estatistica
(2006, 2020), a frota de veiculos no Brasil em 2006 era composta por aproximadamente 45
milhdes unidades, enquanto que, em 2020, a frota de veiculos no Brasil cresceu cerca de
140% em relacdo a 2006, atingindo uma marca de 108 milhdes de unidades de veiculos de
diversos tipos. Essa popularizacdo de veiculos automotivos decorre principalmente do
crescimento econdémico do Brasil durante as ultimas décadas, que possibilitou um aumento de
renda para diferentes classes sociais e, consequentemente, facilitou a aquisicdo de veiculos
pela populacdo. Outro fator importante que explica a expansdo da frota de veiculos no Brasil é
a reducdo do custo de fabricacdo e de venda destes produtos, desde que o Fordismo
revolucionou a industria de producdo de automoveis, fazendo com que veiculos deixassem de
ser produtos caros, através da producdo em massa, se tornando mais acessiveis para a

populacéo.

No entanto, com o crescimento elevado de veiculos automotivos, problemas
envolvendo o trafego de veiculos nas vias também crescem. Dentre estes problemas, pode-se
observar um aumento de congestionamento em grandes centros urbanos, um aumento da
emissdo de gases poluentes na atmosfera e também um aumento nos indices de acidentes de
transitos. Em relacdo aos acidentes, o Brasil ainda possui altos indices. Segundo os dados
divulgados pelo DATASUS (2020), foram registrados cerca de 30 a 40 mil mortes por
acidentes de transito nos ultimos 5 anos. Muitos desses acidentes ocorrem principalmente em
vias que possuem cruzamentos com problemas de ocluséo, prejudicando a visibilidade de

motoristas que trafegam por elas.

Com o avanco do poder computacional durante os ultimos anos, e a facilidade na
aquisicdo de grandes quantidades de dados devido a digitalizacdo da sociedade, um subtopico
da Inteligéncia Artificial (1A), conhecido como Deep Learning (DL), tem ganhado destaque

atualmente. Deep Learning (em portugués, Aprendizado Profundo) é uma subarea de Machine
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Learning (em portugués, Aprendizado de Mé&quina) e envolve a criagdo de modelos com
diversas camadas, nas quais as saidas de uma camada servem de entrada para uma camada
posterior. Cada camada é capaz de realizar transformacdes lineares e nao-lineares aos dados
que recebem em sua entrada, produzindo um resultado na camada de saida do modelo. O
principal diferencial de algoritmos baseados em Machine Learning sdo suas capacidades de
aprendizado a partir de um conjunto de dados de treinamento. Esses algoritmos sdo capazes
de extrair padrdes e adquirir conhecimento dos dados de entrada durante seu treinamento e,
posteriormente, sdo utilizados para inferir sobre dados novos afim de se realizar tarefas de
classificacdo, predicdo ou reconhecimento de padrdes (GOODFELLOW, I.; BENGIO, Y.;
COURVILLE, A., 2016). O grande destaque que proporcionou a difusdo de aplicacOes
baseadas em Deep Learning na atualidade é a forma como o modelo aprende a partir dos
dados. Modelos de DL aprendem features, ou caracteristicas, dos dados automaticamente
através do seu processo de treinamento (ALOM, M. Z. et al., 2018). Por exemplo, um modelo
capaz de identificar veiculos em uma imagem aprende a identificar as features que compde
um veiculo (rodas, capd, formato) para entdo, combina-las e determinar se o objeto observado

¢ classificado como veiculo ou néo.

Diversas aplicagdes se beneficiam do uso de Deep Learning. Uma delas consiste na
identificacdo e localizacdo de determinados objetos em imagens. Para aplicagdes como essa,
Redes Neurais Convolucionais (em inglés, Convolutional Neural Networks — CNN) geram
Otimos resultados (LECUN, Y.; BENGIO, Y.; HINTON, G., 2015). Redes Neurais
Convolucionais sdo redes profundas com diversas camadas de convolucdo e pooling
conectadas e séo capazes de extrair features presentes nas imagens, combinar essas features
semanticamente para formar objetos conhecidos e entdo, classificar determinado objeto de
acordo com o objetivo final da aplicacdo. As arquiteturas mais comuns de CNN para
classificacdo de imagens sdo compostas por varias camadas de convolucdo, max pooling e, ao
final da rede, camadas totalmente conectadas. Algumas dessas arquiteturas famosas sdo:
AlexNet (KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. 2012), VGG
(SIMONYAN, K.; ZISSERMAN, A., 2014) e GoogLeNet (SZEGEDY, C. et al., 2014). Para
aplicagcdes que envolvem a segmentacdo semantica e localizacdo de objetos em imagens, as
arquiteturas mais comuns de CNN consistem na substituicdo das camadas totalmente

conectadas por camadas de upsampling e uma camada convolucional na saida das redes,
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sendo possivel gerar as imagens segmentadas ao final da rede. Essas arquiteturas também sdo
chamadas de fully convolutional networks (FCN). Algumas dessas arquiteturas sédo: U-Net
(RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015) e FCN (LONG, J.; SHELHAMER,
E.; DARRELL, T., 2014).

Devido a grande flexibilidade proporcionada pelo uso de CNN em diversas aplicagdes,
é possivel que modelos de CNN possam contribuir para reducéo dos indices de acidentes nas
vias publicas. Diversos cruzamentos possuem cameras de monitoramento que captam veiculos
que trafegam pelas ruas. Um modelo capaz de localizar veiculos em imagens provenientes
dessas cameras poderia sinalizar motoristas que atravessam cruzamentos com problema de
oclusdo de que outros veiculos também estdo passando pelo mesmo cruzamento, aumentando
a atencdo de motoristas através da sinalizacdo e, por consequéncia, reduzindo o risco de

acidentes.

1.2. Objetivos

Este trabalho tem como objetivo o desenvolvimento de um sistema capaz de processar
videos de cémeras de monitoramento de cruzamentos, utilizando uma Rede Neural
Convolucional para realizar a segmentacdo semantica de veiculos, sendo possivel identificar e
localizar possiveis veiculos trafegando pelo cruzamento atraves dos videos e assim aumentar

a seguranca nas vias publicas.

Para essa finalidade, a arquitetura de CNN escolhida para o estudo e desenvolvimento
da aplicacdo é a U-Net, que é uma rede que possibilita a localizacdo e segmentacdo de objetos
em imagens (RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015). E realizado o
treinamento da rede com um conjunto de imagens de treino, afim de se obter uma rede capaz

de exercer essa funcionalidade.

Para o processamento de videos, um sistema é desenvolvido para extracdo de frames
(em portugués, quadros) dos videos. Um pré-processamento é realizado em cada frame antes
de serem passados para a CNN, que realiza a segmentacdo semantica e retorna o resultado

processado pelo sistema.



Para analise dos resultados, sdo realizadas comparagdes da configuracdo da U-net
implementada em relacdo a outras arquiteturas de CNN que realizam a funcdo de
segmentacdo semantica como a FCN-8s e a FCN-16s (LONG, J.; SHELHAMER, E.;

DARRELL, T., 2014). Os resultados sdo avaliados sobre um conjunto de imagens de teste.

1.3. Organizacao do Trabalho

No Capitulo 2 é apresentada uma descrigdo teorica dos conceitos e terminologias
envolvidos no desenvolvimento do trabalho e também trabalhos relacionados ao presente
projeto. A seguir, no Capitulo 3, sdo descritas todas as atividades realizadas durante o
desenvolvimento do projeto, também séo apresentados os resultados obtidos e dificuldades
encontradas durante o desenvolvimento. Finalmente, no Capitulo 4, € apresentada a conclusao

do trabalho e contribuicdes do projeto realizado.



CAPITULO 2: REVISAO BIBLIOGRAFICA

2.1. Consideracdes Iniciais

Neste capitulo sdo apresentados diversos conceitos tedricos que sao abordados ao
longo do projeto e também sdo descritas algumas terminologias bastante utilizadas em DL.
Alguns conceitos abordados sdo: Segmentacdo Semantica, Redes Neurais Convolucionais
para segmentacdo semantica em imagens e algumas arquiteturas, Datasets (em portugués,
conjunto de dados), Regularizacdo, Métrica Intersection over Union (loU) para avaliacdo de
desempenho da segmentacdo semantica, dentre outros. Ao final do capitulo, sdo apresentados

alguns trabalhos relacionados ao projeto.

2.2. Conceitos e Terminologias

2.2.1. Segmentacdo Semantica

Segmentacdo Semantica consiste no processo atribuir uma determinada classe a cada

pixel presente na imagem. Um exemplo de Segmentacdo Semantica pode ser visto na figura 1.

Figura 1 - Exemplo de Segmentacdo Semantica

Fonte: https://medium.com/intro-to-artificial-intelligence/semantic-segmentation-udaitys-self-
driving-car-engineer-nanodegree-c0leb6eafod



Como pode ser observado na figura 1, os pixels que compde carros séo classificados
com uma cor. Os pixels que compde pessoas sao classificados com outra cor, indicando uma
classe diferente de carros. O mesmo pode ser observado para diferentes objetos na imagem,
indicando diferentes classes. Esse processo permite que a aplicacdo seja capaz de identificar

objetos e localizar a posi¢do desses objetos nas imagens.
2.2.2. Datasets

Datasets sdo conjuntos de dados utilizados para treinar e testar modelos de Machine
Learning. Existem Datasets com dados em diferentes formatos e cada aplicacdo requer um
formato especifico dependendo da funcionalidade que se deseja atingir. Além disso, como o
aprendizado de CNN é supervisionado, cada dado do Dataset deve ser composto de um par de
elementos: o dado em questdo e um label (em portugués, rétulo) que identifica a classe do
dado para que o modelo seja capaz de calcular o erro entre a predicdo realizada e a
classificacéo real do elemento.

Existem trés tipos de Datasets:

e Training Set: Consiste do conjunto de dados que é utilizado para o treinamento
do modelo. Os parametros do modelo sdo alterados somente pela avaliacdo no

conjunto de treinamento

e Validation Set: Consiste de um conjunto de dados utilizado para avaliar o
modelo durante o treinamento e pode ser utilizado para ajustar hiperparametros
e evitar Overfitting. Os parametros do modelo ndo sdo alterados pelo conjunto

de validacdo.

e Test Set: Consiste do conjunto utilizado para avaliar o modelo apés ser treinado
e ajustado. Também representa uma maneira de medir o erro de generalizagédo
do modelo, ou seja, 0 quanto o modelo aprendeu a prever dados que nunca viu
(GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A., 2016).

Para a funcionalidade de segmentacdo semantica, os Datasets utilizados sao

compostos de um par de imagens: a imagem original e uma imagem, de mesma dimensao que



a original, onde cada pixel estd indicado com uma classe ou label. Essa imagem de labels é
comumente chamada de ground truth (GT). Um exemplo do par de imagens necessérias para

treinar uma CNN para realizar a segmentacdo semantica esta mostrada na Figura 2.

Figura 2 - Imagem e sua respectiva Ground Truth

Imagem Ground Truth

Fonte: Adaptado de CORDTS, M. et al. (2016).

Conforme é possivel observar na Figura 2, cada objeto diferente na imagem ¢é
representado por uma classe diferente no GT.

2.2.3. Regularizacéo

Regularizacdo ¢ um conjunto de técnicas utilizadas para aumentar a capacidade de
generalizacdo dos modelos e controlar Overfitting, ou seja, quando o modelo possui baixo
valor de erro na previsdo de dados do conjunto de treino e alto valor de erro na previsao de
dados dos conjuntos de validacdo e teste. No caso de Overfitting, o0 modelo é incapaz de
generalizar para dados novos gque nunca viu. Existem diversas técnicas de regularizacdo para

DL e algumas utilizadas neste trabalho séo:

e Early Stopping: E utilizado juntamente com o conjunto de validacdo para
monitorar o erro do mesmo durante o treinamento. Durante o treinamento, o
erro no conjunto de treino e validacdo tende a diminuir enquanto o modelo
aprende. A partir de certa iteracdo, o erro no conjunto de validagdo comega a
subir enquanto que o erro no conjunto de treino continua descendo. Neste
momento, 0 modelo estd comegando a apresentar Overfitting. O Early Stopping

faz o treinamento parar, evitando o Overfitting.



e Data Augmentation: Consiste na aplicacdo de transformacdes ao conjunto de
treinamento, afim de se obter mais amostras para treinar os modelos. Quanto
maior 0 numero de amostras para treinamento, mais o modelo ganha
capacidade de generalizagéo, possibilitando reduzir o Overfitting. Para CNN
que utilizam imagens como dado de treinamento, pode-se aplicar

transformacdes como: translacéo, rotacdo, flips, adicdo de ruido, dentre outras.

e Dropout: Consiste de uma técnica na qual alguns neurdnios selecionados
aleatoriamente em uma camada sdo ignorados durante o treinamento,
reduzindo a complexidade da rede e forcando que a rede treine com conexdes
diferentes entre cada camada. Com a reducdo da complexidade, ocorre também
a reducdo de Overfitting. (GOODFELLOW, I.; BENGIO, Y.; COURVILLE,
A., 2016; SRIVASTAVA, N. et al., 2014).

2.2.4. Métrica Intersection over Union Média

A métrica de Intersection over Union avalia a performance do modelo na sua
capacidade de detectar objetos. Essa métrica trabalha com a comparagdo entre o ground truth
e a previsao gerada pelo modelo. A comparacdo é feita através das operacdes de unido e
intersecdo. A loU ¢ definida como a razdo entre a area de sobreposicdo do objeto previsto
com o ground truth (interseccdo) e a area somada do objeto previsto e do ground truth

(unido). A visualizacdo do calculo dessa métrica pode ser vista na Figura 3.



Figura 3 - Visualizagdo da loU

Area of Overlap

loU =

Area of Union

Fonte: Adaptado de https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-
453511185bel

Na Figura 3, o quadrado em verde representa o0 GT e o quadrado em vermelho
representa a previsdo do modelo. Quando o modelo prevé corretamente certa area de um
objeto, temos a area de interseccdo ou True Positive (TP). Quando o modelo prevé uma area
gue ndo pertence ao GT, temos a area de False Positive (FP). Quando o modelo ndo prevé
uma area que pertence ao GT, temos a area de False Negative (FN). A area de unido

corresponde a soma de TP, FP e FN. Matematicamente, a loU é calculada como:
IoU = rprpow (1)

A loU atinge valor maximo quando o objeto previsto € exatamente igual ao GT e

atinge valor minimo quando o objeto previsto é completamente diferente do GT.

A loU média é calculada como a média entre a loU de todas as classes do problema.



2.3. Redes Neurais Convolucionais e Arquiteturas

2.3.1. DefinicOes

Redes Neurais Convolucionais para segmentacao semantica sdo redes feedforward, ou
seja, sdo redes nos quais as imagens sdo propagadas da entrada da rede até a saida. Nas
camadas intermediarias, as imagens passam por camadas de convolugdo, max pooling,
upsampling e transformagdes ndo-lineares por meio de funcbes de ativacdo. Na saida, o
resultado previsto pela rede é comparado com o ground truth para se obter o erro entre a
previsdo e o resultado real. Com o erro calculado, a rede utiliza algoritmos de
backpropagation para calcular o gradiente da funcdo de erro em relagdo aos parametros
treinaveis e utiliza um otimizador para reduzir o erro através da atualizacdo desses parametros
(GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A., 2016). Os parametros sdo atualizados
a cada passagem de um Mini-Batch (em portugués, Mini-Lote) pela rede, que é composto por

partes do conjunto total de treino.

Neste trabalho, o otimizador utilizado é o Adam, que apresenta resultados eficientes na
otimizacdo de parametros de CNN (KINGMA, D. P.; BA, J. L., 2014). Também ¢ utilizado a
funcdo de erro Cross-Entropy (CE), que permite o calculo do erro para multiplas classes. A
Cross-Entropy calcula o erro para cada pixel da imagem de acordo com a seguinte formula:

v

CE = —Yvlog(d) 2)

Onde N representa o numero de classes do problema, yi representa o ground truth para
a classe i e yi representa a predicdo do modelo para determinada classe i. A média do erro de

cada pixel na imagem € utilizada como o erro global do problema.

Sé&o aplicadas fungdes de ativagdo nas camadas de convolucdo afim de se garantir a
néo-linearidade dos resultados produzidos pelas CNN. Neste trabalho, a funcdo de ativacéo
utilizada nas camadas de convolucgdo é a Rectified Linear Unit (ReLU), que reduz o custo
computacional ao treinar modelos, aumentando a rapidez e eficiéncia do treinamento
(KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E., 2012). A Figura 4 mostra o gréafico
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da ReLU. Para valores negativos, a ReLU retorna zero e para valores positivos, retorna o

proprio valor.

Figura 4 - Grafico da ReLU

10 1

Fonte: Autor desta monografia.

Na camada de saida de CNN que resolvem problemas de multiplas classes, é utilizada
a funcdo de ativacdo Softmax, que transforma a saida da rede em uma distribuicdo de
probabilidades entre todas as classes do problema, possibilitando atribuir a classe com maior

probabilidade ao elemento avaliado.
2.3.2. Camadas

Redes Neurais Convolucionais sdo redes profundas que possuem diversas camadas e a
principal camada responsavel pelo seu funcionamento é a Camada de Convolugdo. A Camada
de Convolucdo consiste de uma camada que realiza a operacdo de convolugdo entre uma
matriz de pixels e um filtro 2D, também chamado de kernel, cuja dimensdo é um
hiperpardmetro que pode ser definido. A visualizacdo da operacdo de convolucdo esta

mostrada na Figura 5, na qual é aplicado um filtro de 3x3 a imagem.
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Figura 5 - Visualizagdo da operacéo de Convolugédo
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Fonte: https://anhvnn.wordpress.com/2018/02/01/deep-learning-computer-vision-and-
convolutional-neural-networks/

Cada valor do filtro € um parametro treinavel da rede e esses filtros sdo ajustados
durante o treinamento afim de serem capazes de detectar features que compdem a imagem
como arestas, circulos e bordas. A quantidade de filtros em cada camada convolucional
também é um hiperparametro que pode ser definido. A saida produzida por cada convolugéo
entre a imagem e um filtro € uma matriz com dimensédo reduzida, chamada de feature map
(em portugués, mapa de ativacdo). A saida da camada de convolucao produz uma quantidade
de feature maps igual a quantidade de filtros que a camada possui. A quantidade de

parametros treinaveis em uma camada de convolucéo ¢é dada pela equacao (3).

quantidade de parametros = (how, C_ .+ 1DC .0 (3)

Onde hr e ws séo as dimensdes dos filtros da camada, Centrada € 0 NUMero de canais da
imagem na entrada da camada e Csada € @ quantidade de canais da imagem na saida da

camada.

A Camada de Max Pooling é responsavel por reduzir o tamanho da imagem conforme
ela é propagada pela rede, reduzindo o custo computacional necessario para processar grandes
quantidades de dados de multiplas dimensdes. A operacdo de Max Pooling € realizada para
todos mapas de ativacdo produzidos pela camada de convolugdo anterior e pode ser

visualizada na Figura 6.
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Figura 6 - Visualizacio da operacéo de Max Pooling
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Fonte: https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

Esta camada realiza uma varredura nos mapas de ativacao, buscando sempre o maior
valor dentro de uma janela definida como hiperpardametro (no caso da Figura 6, a janela
possui tamanho 2x2). O stride (em portugués, passo) em que a janela varre a figura também é
definido por um hiperparametro (no caso da Figura 6, o stride é 2). Essa operacdo permite que
as informacgdes mais importantes da imagem, que sdo as de maiores valores, sejam mantidas
na figura de tamanho reduzido. As camadas de Max Pooling ndo possuem parametros

treinaveis.

Para realizar a reconstrucdo das imagens de tamanho reduzido pelas camadas de
convolugéo e max pooling, séo utilizadas Camadas de Upsampling. Ao utilizar a operacao de
convolugdo transposta como forma de upsampling, é possivel aumentar o tamanho das
imagens através de filtros com parametros treindveis. A convolucao transposta também possui
hiperparametros como tamanho do filtro, stride e quantidade de filtros. A visualizacdo da

convolucgdo transposta estd mostrada na Figura 7.

Figura 7 - Visualizagdo da operacao de Convolucédo Transposta
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Fonte: https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

A Figura 7 mostra a operagdo de convolugdo transposta com kernel 2x2 e stride

unitario. Cada elemento da entrada é multiplicado por todos valores do filtro. O resultado
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final corresponde a soma dos valores produzidos em cada posi¢cdo da matriz de saida. A
quantidade de parametros treindveis em camadas de upsampling que utilizam a convolucao

transposta é dada pela equacéo (3).
2.3.3. Arquiteturas

As arquiteturas mais comuns para CNN que realizam segmentagdo semantica
consistem de camadas de convolugéo, seguidas por uma camada de max pooling, seguida por
mais camadas de convolucdo, seguida por mais uma camada de max pooling e assim por
diante. Esse bloco de camadas € utilizado para extrair features e informagfes semanticas da
imagem. Em camadas iniciais, sdo obtidas informac6es de arestas e bordas que compdem 0s
objetos, bem como suas localiza¢bes nas imagens. Em camadas mais profundas, sdo obtidas
informacBes de objetos completos através da combinacdo de features, porém com baixa
resolugdo. Esse bloco é chamado de Encoder. Apds isso, sdo utilizadas camadas de
upsampling para producdo da segmentacdo semantica da imagem com mesmo tamanho da
entrada. Esse processo consiste em aumentar a resolucéo e é chamado de Decoder (XING, Y.;
ZHONG, L.; ZHONG, X., 2020). As arquiteturas discutidas a seguir possuem a estrutura
Encoder-Decoder.

A U-Net, proposta por Ronneberger et al. (2015), é uma arquitetura proposta para

segmentacdo semantica de imagens biomédicas e pode ser vista na Figura 8.
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Figura 8 - Arquitetura da U-Net
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Fonte: RONNEBERGER, O.; FISCHER, P.; BROX, T., 2015.

A U-Net apresenta dois caminhos simétricos nos quais as imagens sao propagadas, 0
Contracting Path a esquerda e o Expansive Path a direita, que correspondem a estrutura
Encoder-Decoder. Além disso, séo realizadas diversas operacfes de concatenacdo de feature
maps do Contracting Path com o Expansive Path, afim de se obter maior precisdo na
localizacdo de objetos devido a alta resolucdo proporcionada pelas camadas iniciais. A saida
da U-Net consiste de uma camada de convolucdo, que produz uma quantidade de feature
maps igual ao numero de classes do problema, onde cada feature map apresenta a

segmentacdo semantica de sua respectiva classe.

As arquiteturas FCN-32s, FCN-16s e FCN-8s, propostas por Long et al. (2014),
podem ser vistas na Figura 9.
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Figura 9 - Arquiteturas FCN-32s, FCN-16s e FCN-8s
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Fonte: LONG, J.; SHELHAMER, E.; DARRELL, T., 2014.

Essas arquiteturas se diferem pela operacédo de upsampling final com diferentes strides
(32, 16 ou 8) e também pelas operacdes de soma de informacdo de camadas anteriores, afim
de se obter localizacdo de objetos, presentes em camadas iniciais, com maior precisao. As
operacdes de soma combinam previsdes feitas sobre camadas de pooling intermediarias e a

camada de pooling final.

2.4. Trabalhos Relacionados

Para realizacdo deste trabalho, sdo utilizadas as arquiteturas e conceitos propostas por
Long et al. (2014) e Ronneberger et al. (2015) para implementacdes de sistemas capazes de

reconhecer e localizar veiculos.

Além disso, outros trabalhos envolvendo a segmentacdo semantica foram propostos
como a SegNet, proposta por Badrinarayanan et al. (2015) que é uma arquitetura de CNN do

tipo Encoder-Decoder.

A segmentacdo seméntica também é bastante utilizada na visdo computacional de
veiculos autdbnomos. Os conceitos de deteccdo de objetos sdo importantes para o
desenvolvimento de veiculos autbnomos seguros. A predicdo feita para cada pixel na imagem
garante que o veiculo autbnomo consiga identificar diversos obstaculos e assim, tomar
decisbes baseadas nas informacgdes obtidas, aumentando a seguranca. No entanto, 0 custo
computacional para realizar a segmentacdo semantica em tempo real € alto e muitos sistemas

embarcados presentes em veiculos autbnomos ndo possuem essa capacidade. Treml et al.
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(2016) propde técnicas para aumentar a velocidade da segmentacdo semantica, para que
sistemas computacionais possam reagir rapidamente, através de uma arquitetura do tipo

Encoder-Decoder e assim, aumentar a seguranga no transito.

2.5. Consideracdes Finais

Neste capitulo foram apresentados diversos conceitos tedricos relacionados ao projeto
e também foram descritas algumas terminologias utilizadas em DL. Também foram
apresentados algumas das principais arquiteturas de CNN que realizam segmentacdo
semantica e suas principais camadas. Posteriormente, foram apresentados trabalhos
relacionados ao desenvolvimento do projeto. O capitulo seguinte consiste na descri¢do do
desenvolvimento do trabalho proposto e na discusséo dos resultados obtidos.
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CAPITULO 3: DESENVOLVIMENTO DO
TRABALHO

3.1. Consideracdes Iniciais

Neste capitulo séo apresentados todos os passos envolvidos no desenvolvimento do
projeto. E apresentada a modelagem do sistema que recebe um video como entrada e realiza a
segmentacdo semantica para localizar veiculos nas imagens e as implementagdes necessarias
para seu desenvolvimento. Também é mostrado o dataset escolhido para treino da CNN e o
beneficio de desempenho em relacdo ao data augmentation aplicado. Posteriormente, é
realizada a implementacéo e comparagdo da U-Net com outras configuracdes de CNN (FCN-
8s e a FCN-16s) para avaliar o desempenho e os resultados obtidos. Por fim, sdo discutidas as
dificuldades e limitagdes encontradas durante o desenvolvimento do projeto.

3.2. Descricao do Projeto

3.2.1. Modelagem do Sistema

O trabalho consiste no desenvolvimento de um sistema capaz de receber videos
provenientes de cameras de monitoramento em cruzamentos, afim de se localizar veiculos que
trafegam pelas vias através da segmentacdo semantica. Para isso, foi proposto o sistema

apresentado na Figura 10.

Figura 10 - Modelagem do Sistema
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Fonte: Autor desta monografia.
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A primeira parte do sistema consiste da entrada do video ao sistema. Dentro do
sistema, o video € quebrado em frames e esses frames sdo armazenados em uma estrutura de
dados do tipo lista, na ordem em que aparecem no video. Também sdo armazenadas
informacBes como tempo do video, frames por segundo (fps) do video e numero de frames

presentes no video.

A segunda parte do sistema consiste de um pré-processamento realizado nos frames.
Esse pré-processamento consiste em redimensionar a largura e altura dos frames para o
tamanho que a CNN suporta. O pré-processamento também transforma o sistema de cores dos
frames de RGB para Grayscale (em portugués, niveis de cinza), para que 0 processamento
realizado pela CNN possua menos custo computacional. Por fim, é aplicada uma
normalizacdo aos frames para reescalar os valores dos pixels entre zero e um e assim,

poderem ser processadas pela CNN.

A terceira parte do sistema consiste da Rede Neural Convolucional, que recebe cada
frame pré-processado para poder realizar a predicdo sobre os pixels. Cada frame que passa
pela rede tem o valor de seus pixels preditos. A saida da CNN retorna, para cada frame, um
vetor de trés dimensdes. As duas primeiras representam a largura e altura do frame e a terceira
representa a quantidade de classes do problema, ou seja, cada classe produz uma matriz de
dimensGes iguais do frame contendo a segmentacdo semantica correspondente da classe em

questéo.

A quarta parte do sistema corresponde a geracdo de uma lista com os frames
processados pela rede. As classes separadas em cada matriz sdo juntadas em uma Gnica matriz
de mesmo tamanho. E atribuida uma cor diferente a cada classe diferente para facilitar a
visualizagdo e distingdo entre cada classe predita. Ao final do processo, é obtido uma lista de
todos frames processados, onde a cor de cada pixel indica a classe que foi atribuida aquele
pixel. Com os frames processados, um video é reconstruido com mesmo tempo do video
original, mesmo fps e mesma quantidade de frames. O video com a localiza¢do dos veiculos
preditas pela rede é retornado como saida do sistema. Essa ferramenta € um prototipo, que
permite validar a aplicacdo do sistema de deteccdo veiculos, e assim, futuramente, poderia

sinalizar e evitar uma possivel coliséo.

19



3.2.2. Linguagem de Programacéo

A linguagem de programacdo escolhida para o desenvolvimento do projeto é a
linguagem Python. Python possui diversas bibliotecas para manipulacdo e processamento de

imagens, facilitando a manipulacdo das estruturas de dados que compdem esse tipo de dado.

Além disso, Python possui uma Application Programming Interface (API) para
implementacao e desenvolvimento de redes neurais, chamado Keras. Keras € uma API de alto
nivel que roda em cima de TensorFlow, que é uma plataforma de Machine Learning. A
utilizagdo do Keras em conjunto com o TensorFlow permite a criagdo de modelos altamente
configuraveis e de facil implementagdo. Além disso, o treinamento dos modelos pode ser
acelerado por unidades de processamento grafico (GPU) para aumentar a velocidade do
treinamento (CHOLLET, F. etal., 2015; ABADI, M. et al., 2015).

3.2.3. Plataforma de Desenvolvimento e Recursos Computacionais

O sistema foi implementado e testado no sistema operacional de 64 bits Windows 10

Pro Verséo 10.0.19041. Os recursos de hardware s&o:
e Processador: Intel® Core™ i7-6820HK CPU @ 2.70GHz
e Memoria RAM: 16.0 GB
e GPU: NVIDIA GeForce GTX 1070 - 8.0 GB

Para desenvolvimento do software, foi utilizado o ambiente de desenvolvimento
integrado (IDE) Spyder, que é uma plataforma open source para desenvolvimento de codigos

em Python. As versdes utilizadas estdo listadas a seguir:
e Verséo Spyder IDE: 4.2.5
e Versdo Python: 3.7.9

e \ersdo Keras: 2.4.3
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3.3. Descricéo das Atividades Realizadas

3.3.1. Escolha e Processamento do Dataset

Para realizar o treinamento de CNN é necessario um dataset de imagens de veiculos e
suas respectivas GT. Foram analisados dois datasets para o desenvolvimento do trabalho e

apenas um foi escolhido.

O primeiro consiste do dataset de Voigtlaender et al. (2019) chamado de KITTI Multi-
Object and Segmentation (KITTI MOTS). Esse dataset consiste de 8008 imagens RGB para
treino, onde cada imagem possui tamanho aproximado de 1242x375 e um respectivo GT de
mesma dimensdo. As imagens de GT possuem rotulos que identificam background, carros,
pessoas e objetos diferentes (caminhdes, bicicletas, dentre outros). Um exemplo das imagens
do KITTI MOTS Dataset € mostrado na Figura 11.

Figura 11 - Imagens do KITTI MOTS Dataset

Imagem Ground Truth

Imagem Ground Truth
»

Fonte: Adaptado de Voigtlaender et al. (2019).

O segundo consiste do dataset de Cordts et al. (2016) chamado de Cityscapes Dataset.
Esse dataset consiste de 2975 imagens RGB para treino, onde cada imagem possui tamanho
2048x1024 e um respectivo GT de mesma dimensdo. Além disso, o dataset possui um
conjunto de validagdo com 500 imagens diferentes das imagens de treino e com mesmo

tamanho e rotulos no GT. As imagens de GT possuem rétulos que indicam 30 classes
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diferentes (carros, caminhdes, motos, pessoas, ruas, dentre outras). Um exemplo das imagens
do Cityscapes Dataset € mostrado na Figura 12.

Figura 12 - Exemplo do Cityscapes Dataset

Imagem Ground Truth

Imagem Ground Truth

Fonte: Adaptado de Cordts et al. (2016).

Para este trabalho, foi escolhido a utilizagdo do Cityscapes Dataset pois ele apresenta
uma maior variabilidade nos tipos de veiculos rotulados, devido a quantidade maior de classes
rotuladas. No entanto, ele apresenta uma desvantagem em relagdo ao KITTI MOTS devido a

menor quantidade de imagens.

Com o dataset escolhido, foi realizado um processamento em todas as imagens afim
de se padronizar o dataset. O processamento consiste em remover as bordas das imagens, nas
quais aparecem a frente do carro que fotografou as ruas, para que isso ndo influencie no
treinamento da CNN. Também foi realizada uma filtragem nas 30 classes para manter apenas
11 classes que representam todos os tipos de veiculos e pedestres. Isso foi feito para remover
classes que ndo fariam sentido para o desenvolvimento do sistema (prédios, placas, arvores,
dentre outras) e para reduzir o custo computacional ao processar multiplas classes. As
imagens também tiveram a dimensdo reduzida para reduzir o custo computacional. A lista

com todas as 11 classes restantes e seus respectivos labels esta mostrada na Tabela 1.
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Tabela 1 — Lista de classes e seus valores de labels

Valor do pixel no GT Tipo
(label)
0 Background
Pedestres
Ciclistas/Motoqueiros
Carros
Caminhdes
Onibus
Trailers
Carretas
Trem
Motos
Bicicletas

O©ooO~NOoO Ol WwWN -

[EEN
o

A Figura 13 mostra uma imagem e seu GT apds o processamento realizado.

Figura 13 - Imagem e GT ap0s 0 processamento

Imagem Ground Truth

Fonte: Adaptado de Cordts et al. (2016).

Por fim, foram definidos os datasets de treino, validacdo e teste. As 500 imagens de
validacdo do Cityscapes Dataset foram separadas para serem utilizadas como o conjunto de
teste. Foram separadas 300 imagens do conjunto de treino para serem utilizadas como o
conjunto de validagéo, restando 2675 imagens para o conjunto de treino. A distribuicdo da

quantidade de imagens por classes nos diferentes conjuntos pode ser vista na Figura 14.

23



Figura 14 - Distribuicdo da quantidade de imagens por classes nos datasets
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Fonte: Autor desta monografia.

3.3.2. Data Augmentation

Afim de se aumentar a quantidade de imagens de treino e reduzir o overfitting, foram
aplicados trés métodos de data augmentation: flip horizontal, translacdo e adicdo de ruido. As
transformacoes realizadas foram aplicadas somente no conjunto de treino e principalmente em

imagens que contém classes com baixa ocorréncia, para aumentar a frequéncia dessas classes.

O flip horizontal consiste no espelhamento horizontal da imagem e sua GT. As

imagens ficam invertidas em relacdo ao eixo vertical.

A translacdo consiste em um deslocamento aplicado a todos os pixels da imagem. Foi
implementado a translacdo para direita, esquerda e para cima. Um valor aleatério entre 40 e
128 pixels é utilizado para definir o tamanho do deslocamento aplicado a imagem e a direcdo
é escolhida aleatoriamente entre cima, direita e esquerda. O limite inferior 40 foi definido
para ndo gerar imagens muito préximas a original e o limite superior 128 foi definido para
ndo gerar imagens com deslocamento muito grande que retiram objetos da cena. A translacéo

é aplicada tanto na imagem quanto no GT.

O ruido aplicado consiste na alteracdo aleatéria de valores dos pixels da imagem para
255 (branco) ou 0 (preto), afim de se produzir imagens com deformacdes. Cada pixel da

imagem possui uma probabilidade de 5% de ser alterado para 255 ou 0.

Na Figura 15 estdo mostrados exemplos do flip horizontal, translacdo para direita e
ruido aplicado nas imagens. Apoés as transformacdes, o conjunto de treino ficou composto por
8097 imagens e GT. A distribuicdo da quantidade de imagens de treino por classe ap6s a

aplicacdo do data augmentation esta mostrada na Figura 16.
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Figura 15 - Exemplos da aplicacdo do data augmentation
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Fonte: Adaptado de Cordts et al. (2016).

Figura 16 — Quantidade de imagens por classe ap6s o data augmentation
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Fonte: Autor desta monografia.
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3.3.3. Implementacao do Custom Data Generator

Para realizar o treinamento da CNN com conjuntos de dados muito grandes que nao
cabem inteiramente na memoria RAM, foi necessario a implementacdo de um Data
Generator, que gera batchs de imagens e suas GT durante o treinamento, sem que seja
necessario carregar todos os dados a0 mesmo tempo na memdria RAM. Para isso, foi

utilizado a classe Sequence presente no pacote de utilidades do Keras (keras.utils).

Foi implementado uma classe chamada de CustomDataGenerator, que € herdada da
classe Sequence do Keras. O tamanho do lote que serd gerado durante o treinamento é
passado como parametro (chamado de batch_size) ao se instanciar o objeto da classe. Com
isso, cada lote gerado possui uma quantidade de batch_size imagens e GT, que sdo lidas do

disco durante o treinamento da rede.

Cada imagem é lida em grayscale, para reduzir o custo computacional do treinamento.
Também é aplicado normalizagdo as imagens de treinamento atraves do método normalize do
pacote de utilidades do Keras. Cada GT também é lido em grayscale, onde cada pixel possui
um valor de label entre zero e dez. Para poder ser utilizado na rede, é necessario transformar
cada GT no formato one-hot-encoding. Isso é feito utilizando o método to_categorical do
pacote de utilidade do Keras. Com isso, cada GT possui o formato HxWx11, onde H e W séo
as dimensdes da imagem e o 11 representa as onze classes do problema, no formato one-hot-
enconding. Todos esses passos sdo aplicados a cada lote gerado. O objeto desta classe €

passado como parametro para 0 método que realiza o treinamento no Keras.
3.3.4. Implementacao dos Modelos de CNN

Para realizar as implementac6es dos modelos, foi necessario definir um tamanho fixo
das imagens de entrada que serdo processadas pela rede. Para isso, foram analisados os
tamanhos 128x128, 256x256 e 512x512. Como o dataset possui muitos objetos de diferentes
classes, a reducéo da resolugédo para 128x128 poderia prejudicar a classificagdo de objetos que
estdo muito distantes nas imagens, pela pouca quantidade de pixels que os compde. Para
imagens com resolugdo de 256x256, os objetos ficam bem definidos e a visualizagéo e
distingdo entre eles é facilitada em relacdo a 128x128. Para imagens de 512x512, foi
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verificado que o tempo de treinamento aumenta muito em relacdo a 256x256 (na ordem de

horas) e ndo apresenta ganho consideravel de performance. Além disso, o tamanho de lote

maximo suportado pela memoria RAM é reduzido em relacdo a 256x256. Assim, foi

escolhido utilizar o tamanho 256x256.

Os modelos foram implementados utilizando os pacotes keras.models e keras.layers.

A Tabela 2 mostra a implementacdo da U-Net, indicando as camadas utilizadas e alguns de

seus parametros, a entrada que cada camada recebe, o formato da saida de cada camada e a

quantidade de parametros treinaveis de cada camada. Foi utilizado o parametro que define a

funcdo de ativacdo activation="relu’ para todas camadas de convolu¢do, exceto para a saida,

que utiliza activation="softmax’. Também foi utilizado o pardmetro padding="same’ para

manter o tamanho da imagem na entrada da convolucdo igual o tamanho na saida.

Tabela 2 — Implementacéo da U-Net

Formatoda NuUmero de
Camadas Entrada Saida Parametros
Treinaveis
1)Entrada - 256x256x1 0
2)Conv2D - filters=32, kernel_size=(3,3) 1 256x256x32 320
3)Conv2D - filters=32, kernel_size=(3,3) 2 256x256x32 9248
4)Dropout — rate=0.1 3 256x256x32 0
5)MaxPooling2D — pool size=(2,2) 4 128x128x32 0
6)Conv2D - filters=64, kernel_size=(3,3) 5 128x128x64 18496
7)Conv2D - filters=64, kernel_size=(3,3) 6 128x128x64 36928
8)Dropout — rate=0.1 7 128x128x64 0
9)MaxPooling2D — pool size=(2,2) 8 64x64x64 0
10)Conv2D - filters=128, kernel_size=(3,3) 9 64x64x128 73856
11)Conv2D - filters=128, kernel_size=(3,3) 10 64x64x128 147584
12)Dropout — rate=0.2 11 64x64x128 0
13)MaxPooling2D — pool_size=(2,2) 12 32x32x128 0
14)Conv2D - filters=256, kernel_size=(3,3) 13 32x32x256 295168
15)Conv2D - filters=256, kernel_size=(3,3) 14 32x32x256 590080
16)Dropout — rate=0.3 15 32x32x256 0
17)MaxPooling2D — pool_size=(2,2) 16 16x16x256 0
18)Conv2D - filters=512, kernel_size=(3,3) 17 16x16x512 1180160
19)Conv2D - filters=512, kernel_size=(3,3) 18 16x16x512 2359808
20)Dropout — rate=0.5 19 16x16x512 0
21)Conv2DTranspose — filters=256,
kernel_size=(2,2), strides=(2,2) 20 32x32x256 524544
22)concatenate 21,16 32x32x512 0
23)Conv2D — filters=256, kernel size=(3,3) 22 32x32x256 1179904
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24)Conv2D — filters=256, kernel_size=(3,3) 23 32x32x256 590080
25)Dropout — rate=0.4 24 32x32x256 0
26)Conv2DTranspose — filters=128,

kernel_size=(2,2), strides=(2,2) 25 64x64x128 131200
27)concatenate 26,12 64x64x256 0
28)Conv2D — filters=128, kernel_size=(3,3) 27 64x64x128 295040
29)Conv2D — filters=128, kernel_size=(3,3) 28 64x64x128 147584
30)Dropout — rate=0.3 29 64x64x128 0
31)Conv2DTranspose — filters=64,

kernel_size=(2,2), strides=(2,2) 30 128x128x64 32832
32)concatenate 31,8 128x128x128 0
33)Conv2D - filters=64, kernel_size=(3,3) 32 128x128x64 73792
34)Conv2D - filters=64, kernel_size=(3,3) 33 128x128x64 36928
35)Dropout — rate=0.2 34 128x128x64 0
36)Conv2DTranspose — filters=32,

kernel_size=(2,2), strides=(2,2) 35 256x256x32 8224
37)concatenate 36,4 256x256x64 0
38)Conv2D - filters=32, kernel_size=(3,3) 37 256x256x32 18464
39)Conv2D - filters=32, kernel_size=(3,3) 38 256x256x32 9248
40)Dropout — rate=0.2 39 256Xx256x32 0
41)Conv2D — filters=11, kernel_size=(1,1) 40 256x256x11 363
42)Saida 40 256x256x11 0

A U-Net implementada apresenta 7759851 parametros treinaveis. A Tabela 3 e a

Tabela 4 mostram as implementagdes das redes FCN-16s e FCN-8s respectivamente. As

mesmas configuragdes para funcédo de ativacdo e padding da U-Net foram utilizadas.

Tabela 3 - Implementacdo da FCN-16s

Formato da Numero de
Camadas Entrada Saida Parametros
Treinaveis
1)Entrada - 256x256x1 0
2)Conv2D - filters=16, kernel_size=(3,3) 1 256x256x16 160
3)Conv2D - filters=16, kernel_size=(3,3) 2 256x256x16 2320
4)Dropout — rate=0.1 3 256x256x16 0
5)MaxPooling2D — pool size=(2,2) 4 128x128x16 0
6)Conv2D - filters=32, kernel_size=(3,3) 5 128x128x32 4640
7)Conv2D - filters=32, kernel_size=(3,3) 6 128x128x32 9248
8)Dropout — rate=0.1 7 128x128x32 0
9)MaxPooling2D — pool size=(2,2) 8 64x64x32 0
10)Conv2D - filters=64, kernel_size=(3,3) 9 64x64x64 18496
11)Conv2D — filters=64, kernel size=(3,3) 10 64x64x64 36928

28



12)Conv2D - filters=64, kernel_size=(3,3) 11 64x64x64 36928
13)Dropout — rate=0.2 12 64x64x64 0
14)MaxPooling2D — pool_size=(2,2) 13 32x32x64 0
15)Conv2D - filters=128, kernel_size=(3,3) 14 32x32x128 73856
16)Conv2D - filters=128, kernel_size=(3,3) 15 32x32x128 147584
17)Conv2D - filters=128, kernel_size=(3,3) 16 32x32x128 147584
18)Dropout — rate=0.3 17 32x32x128 0
19)MaxPooling2D — pool_size=(2,2) 18 16x16x128 0
20)Conv2D — filters=128, kernel_size=(3,3) 19 16x16x128 147584
21)Conv2D — filters=128, kernel_size=(3,3) 20 16x16x128 147584
22)Conv2D - filters=128, kernel_size=(3,3) 21 16x16x128 147584
23)Dropout - rate=0.4 22 16x16x128 0
24)MaxPooling2D — pool_size=(2,2) 23 8x8x128 0
25)Conv2D — filters=1024, kernel_size=(7,7) 24 8x8x1024 6423552
26)Dropout — rate=0.5 25 8x8x1024 0
27)Conv2D — filters=1024, kernel_size=(1,1) 26 8x8x1024 1049600
28)Dropout — rate=0.5 27 8x8x1024 0
29)Conv2DTranspose — filters=11,
kernel_size=(2,2), strides=(2,2) 28 16x16x11 45067
30) Conv2D - filters=11, kernel_size=(1,1) 19 16x16x11 1419
31)Add 30,29 16x16x11 0
32)Conv2DTranspose — filters=11,
kernel size=(16,16), strides=(16,16) 31 256x256x11 30987
33)Saida 31 256x256x11 0
Tabela 4 - Implementacédo da FCN-8s
Formato da NuUmero de
Camadas Entrada Saida Parametros
Treinaveis
1)Entrada - 256x256x1 0
2)Conv2D - filters=16, kernel_size=(3,3) 1 256x256x16 160
3)Conv2D - filters=16, kernel_size=(3,3) 2 256x256x16 2320
4)Dropout — rate=0.1 3 256x256x16 0
5)MaxPooling2D — pool size=(2,2) 4 128x128x16 0
6)Conv2D - filters=32, kernel_size=(3,3) 5 128x128x32 4640
7)Conv2D - filters=32, kernel_size=(3,3) 6 128x128x32 9248
8)Dropout — rate=0.1 7 128x128x32 0
9)MaxPooling2D — pool size=(2,2) 8 64x64x32 0
10)Conv2D - filters=64, kernel_size=(3,3) 9 64x64x64 18496
11)Conv2D - filters=64, kernel_size=(3,3) 10 64x64x64 36928
12)Conv2D - filters=64, kernel_size=(3,3) 11 64x64x64 36928
13)Dropout — rate=0.2 12 64x64x64 0
14)MaxPooling2D — pool_size=(2,2) 13 32x32x64 0
15)Conv2D — filters=128, kernel_size=(3,3) 14 32x32x128 73856
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16)Conv2D - filters=128, kernel_size=(3,3) 15 32x32x128 147584
17)Conv2D - filters=128, kernel_size=(3,3) 16 32x32x128 147584
18)Dropout — rate=0.3 17 32x32x128 0
19)MaxPooling2D — pool_size=(2,2) 18 16x16x128 0
20)Conv2D - filters=128, kernel_size=(3,3) 19 16x16x128 147584
21)Conv2D — filters=128, kernel_size=(3,3) 20 16x16x128 147584
22)Conv2D — filters=128, kernel_size=(3,3) 21 16x16x128 147584
23)Dropout - rate=0.4 22 16x16x128 0
24)MaxPooling2D - pool_size=(2,2) 23 8x8x128 0
25)Conv2D — filters=1024, kernel_size=(7,7) 24 8x8x1024 6423552
26)Dropout — rate=0.5 25 8x8x1024 0
27)Conv2D — filters=1024, kernel_size=(1,1) 26 8x8x1024 1049600
28)Dropout — rate=0.5 27 8x8x1024 0
29)Conv2DTranspose — filters=11,

kernel_size=(2,2), strides=(2,2) 28 16x16x11 45067
30) Conv2D - filters=11, kernel_size=(1,1) 19 16x16x11 1419
31)Add 30,29 16x16x11 0
32)Conv2DTranspose — filters=11,

kernel_size=(2,2), strides=(2,2) 31 32x32x11 495
33) Conv2D - filters=11, kernel_size=(1,1) 14 32x32x11 715
34)Add 33,32 32x32x11 0
35)Conv2DTranspose — filters=11,

kernel size=(8,8), strides=(8,8) 34 256x256x11 7755
36)Saida 34 256x256x11 0

A FCN-16s apresenta 8471121 parametros treindveis e a FCN-8s apresenta 8449099

parametros treinaveis.

3.4. Resultados Obtidos

3.4.1. Treinamento dos Modelos e Resultados

Os modelos foram treinados com configurac6es iguais para que seu desempenho fosse
analisado nas mesmas condi¢Ges. O parametro batch_size do Custom Data Generator foi
definido para 16. Os pardmetros dos modelos: loss=’categorical crossentropy’ e
optimizer="adam’ foram definidos para utilizar a funcdo de erro Cross-Entropy e o
otimizador Adam. A métrica para avaliacdo de desempenho é a média loU e ela foi definida
através do parametro metrics=[tf.keras.metrics.MeanloU(num_classes=11)]. Além dos
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parametros, foi utilizado um callback de Early Stopping que termina o treinamento caso néo
ocorra melhora no erro de validagdo do modelo durante 8 épocas. O nimero total de épocas

de treinamento foi definido para 50.

O modelo da U-Net foi avaliado em relacdo a aplicacdo de data augmentation ao
conjunto de treinamento. Para isso, 0 modelo foi treinado com o conjunto de treino padrdo e
com o conjunto de treino com data augmentation. Os gréaficos do erro e da loU média por
épocas estdo mostrados na Figura 17. Além disso, a Tabela 5 apresenta os resultados do erro e
da loU média avaliados no conjunto de treino, validacdo e teste na melhor configuracédo

obtida com o treino.

Figura 17 - Gréficos do Erro e da loU Média para U-Net
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Fonte: Autor desta monografia.
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Tabela 5 - Erro e loU Média nos diferentes conjuntos para a U-Net

Erro loU Média

Treino | Validaco Teste Treino | Validagdo | Teste
U-Net sem

data 0.0906 0.1243 0.1570 0.5994 0.5185 0.5241
augmentation
U-Net com

data 0.0739 0.1085 0.1461 0.6228 0.7271 0.7222
augmentation

De acordo com os resultados obtidos, a aplicacdo de data augmentation ao conjunto de
treino beneficia o desempenho do modelo para localizar os veiculos. Isso € proveniente da
maior quantidade de dados que o modelo possui para treinar, possibilitando maior
generalizacdo, como € observado nos altos valores de loU média obtidos para os conjuntos de
validacao e teste. Além disso, 0 modelo treinado com data augmentation converge em menos

épocas que o modelo treinado com o conjunto de treino padréo.

Para comparar o desempenho da U-Net com outras CNN, foram treinadas as redes
FCN-16s e FCN-8s com data augmentation afim de se observar os resultados para diferentes
arquiteturas de CNN. A Figura 18 mostra os graficos do erro da loU Média para as redes
FCN-8s e FCN-16s. A Tabela 6 apresenta os resultados do erro e da loU média avaliados no
conjunto de treino, validacdo e teste na melhor configuracdo obtida com o treino para essas

redes.

Tabela 6 - Erro e loU Média nos diferentes conjuntos para as FCN

Erro loU Média
Treino | Validagio | Teste Treino | Validagdo | Teste

FCN-16s 0.0799 0.1243 0.1556 0.6624 0.5407 0.5395

FCN-8s 0.0778 0.1201 0.1481 0.6474 0.5379 0.5356
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Figura 18 - Gréficos do Erro e da loU Média para FCN-16s e FCN-8s
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De acordo com os resultados mostrados nas Tabelas 5 e 6, 0 desempenho da U-Net é

superior aos modelos FCN-16s e FCN-8s para a segmentacdo semantica. Os modelos de

FCN-16s e FCN-8s apresentam menor loU média e menor capacidade de generalizacdo em

imagens diferentes do conjunto de treino. Além disso, 0 modelo da U-Net apresenta menor

guantidade de pardmetros treinaveis, proporcionando reducdo no custo computacional ao

treinar os modelos.

3.4.2. Resultados do Sistema

O modelo da U-Net com melhor desempenho foi integrado ao sistema descrito na

secdo 3.2.1 para avaliar os resultados em imagens de videos reais. Para isso, foram utilizados

videos provenientes de cameras de cruzamentos para que O Sistema possa processar e
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identificar veiculos. Cada classe prevista pelo modelo é definida por uma cor e a legenda esta

mostrada na Figura 19.

Figura 19 - Legenda das classes da segmentacao semantica

Pedestres Ciclistas/ Camos Caminhdes Onibus Trailers  Carretas Trem Motos  Biscicletas
Motoqueiros

Fonte: Autor desta monografia.

Os resultados da segmentacdo semantica nos videos estdo mostrados nas Figuras 20 e
21.

Figura 20 - Resultados da segmentac¢do semantica em video 1

Fonte: Adaptado de https://gl.globo.com/sp/sao-carlos-regiao/noticia/2021/01/30/videos-cruzamento-no-
centro-de-sao-carlos-tem-3-acidentes-nos-ultimos-3-dias.ghtml
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Figura 21 - Resultados da segmentagdo semantica em video 2

Fonte: Adaptado de https://www.youtube.com/watch?v=55XfxCPzD-s;
https://www.youtube.com/watch?v=3B9d4Z4p18g

Com base nos resultados obtidos da segmentacdo semantica realizada, é possivel ver
que o sistema é capaz de localizar os veiculos presentes nos videos durante sua locomocéao.
Além disso, o sistema apresenta maior facilidade na localizacdo de carros, pertencentes a
classe 3, devido a grande quantidade de imagens dessa classe no dataset de treino. Em razéo
da menor quantidade de imagens de outras classes, o sistema apresenta maior dificuldade em
reconhecé-las. No geral, é possivel concluir que o sistema apresenta capacidade para detectar
veiculos em movimento nos cruzamentos, sendo possivel sinalizar possiveis riscos aos

motoristas que trafegam por eles, aumentando a seguranca no transito.

3.5. Dificuldades e Limitagdes

A principal dificuldade encontrada no desenvolvimento do projeto foi a determinacao

de um dataset adequado para o treinamento da CNN. Para aplicagcbes que utilizam redes
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neurais, é de extrema importancia que o dataset utilizado para o treinamento corresponda aos
dados reais nos quais a rede sera utilizada. Para aplicacbes que detectam objetos via
segmentacdo semantica, os datasets devem ser compostos pelas imagens e suas respectivas
GT com todos pixels anotados por labels correspondentes as classes. O processo de anotacao
de imagens é um processo custoso que consome muito tempo devido a grande quantidade de
dados necessarios para treinamento e, por essa questdo, foi escolhido um dataset
completamente anotado para realizacdo do projeto. Além disso, o dataset escolhido possui a
limitacdo de ndo conter imagens provenientes de cameras de monitoramento em cruzamentos
e, portanto, ndo é completamente adequado para o desenvolvimento de projetos reais com

essa finalidade.

Afim de se desenvolver um sistema com a finalidade de se detectar objetos por
cameras de monitoramento em cruzamentos, o ideal seria obter uma grande quantidade de
imagens reais provenientes das cameras e realizar o processo de anotacdo nessas imagens,
com o proposito de gerar um dataset especifico para essa situagdo e assim aumentar o

desempenho na deteccéo.

3.6. Considerac0des Finais

Neste capitulo foi abordado o desenvolvimento do trabalho e seus resultados. Foi
realizada uma descricdo da modelagem do sistema para detectar veiculos em videos. Foram
apresentados 0s recursos computacionais e a linguagem de programacédo utilizada para
desenvolvimento do projeto. Também foram descritas todas as implementagdes realizadas
para a construcdo do projeto. Posteriormente, foram apresentados os resultados obtidos com o
treinamento das CNN e os resultados gerais do sistema. Por fim, foram discutidas as
dificuldades encontradas durante o desenvolvimento do projeto. O capitulo seguinte consiste

nas conclusdes proporcionadas pelo desenvolvimento do projeto.
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CAPITULO 4: CONCLUSAO

4.1. Contribuicbes

A proposta do trabalho desenvolvido consiste no aumento da seguranca no transito,
através da utilizacdo de sistemas inteligentes capazes de localizar veiculos. Para isso, o
projeto desenvolvido apresenta potencial para realizagcdo dessa tarefa. Com a utilizagdo de
conjuntos de dados mais especifico e maior poder computacional para o treinamento de
modelos de CNN, o sistema apresentado poderia ser utilizado para realizar o monitoramento

das vias e assim contribuir com o0 aumento da seguranga e a redugéo nos acidentes de transito.

O trabalho desenvolvido proporcionou ao autor um grande entendimento de como
sistemas que utilizam Deep Learning funcionam, através de diversos experimentos realizados
com os modelos de redes neurais convolucionais para realizacdo do projeto. Além disso, 0
projeto proporcionou o aprendizado de uma nova linguagem de programacéo ao autor, que

ndo possuia conhecimentos prévios em Python.
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